LULDev's picture
Upload folder using huggingface_hub
a1da63c verified
from argparse import ArgumentParser
from typing import List
import cv2
import numpy
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, inference_manager, logger, process_manager, state_manager, wording
from facefusion.common_helper import create_int_metavar
from facefusion.download import conditional_download_hashes, conditional_download_sources
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
from facefusion.processors import choices as processors_choices
from facefusion.processors.typing import FrameEnhancerInputs
from facefusion.program_helper import find_argument_group
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import Args, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import create_tile_frames, merge_tile_frames, read_image, read_static_image, write_image
MODEL_SET : ModelSet =\
{
'clear_reality_x4':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/clear_reality_x4.hash',
'path': resolve_relative_path('../.assets/models/clear_reality_x4.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/clear_reality_x4.onnx',
'path': resolve_relative_path('../.assets/models/clear_reality_x4.onnx')
}
},
'size': (128, 8, 4),
'scale': 4
},
'lsdir_x4':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/lsdir_x4.hash',
'path': resolve_relative_path('../.assets/models/lsdir_x4.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/lsdir_x4.onnx',
'path': resolve_relative_path('../.assets/models/lsdir_x4.onnx')
}
},
'size': (128, 8, 4),
'scale': 4
},
'nomos8k_sc_x4':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/nomos8k_sc_x4.hash',
'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/nomos8k_sc_x4.onnx',
'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.onnx')
}
},
'size': (128, 8, 4),
'scale': 4
},
'real_esrgan_x2':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2.hash',
'path': resolve_relative_path('../.assets/models/real_esrgan_x2.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2.onnx',
'path': resolve_relative_path('../.assets/models/real_esrgan_x2.onnx')
}
},
'size': (256, 16, 8),
'scale': 2
},
'real_esrgan_x2_fp16':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2_fp16.hash',
'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2_fp16.onnx',
'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.onnx')
}
},
'size': (256, 16, 8),
'scale': 2
},
'real_esrgan_x4':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4.hash',
'path': resolve_relative_path('../.assets/models/real_esrgan_x4.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4.onnx',
'path': resolve_relative_path('../.assets/models/real_esrgan_x4.onnx')
}
},
'size': (256, 16, 8),
'scale': 4
},
'real_esrgan_x4_fp16':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4_fp16.hash',
'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4_fp16.onnx',
'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.onnx')
}
},
'size': (256, 16, 8),
'scale': 4
},
'real_esrgan_x8':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8.hash',
'path': resolve_relative_path('../.assets/models/real_esrgan_x8.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8.onnx',
'path': resolve_relative_path('../.assets/models/real_esrgan_x8.onnx')
}
},
'size': (256, 16, 8),
'scale': 8
},
'real_esrgan_x8_fp16':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8_fp16.hash',
'path': resolve_relative_path('../.assets/models/real_esrgan_x8_fp16.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8_fp16.onnx',
'path': resolve_relative_path('../.assets/models/real_esrgan_x8_fp16.onnx')
}
},
'size': (256, 16, 8),
'scale': 8
},
'real_hatgan_x4':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_hatgan_x4.hash',
'path': resolve_relative_path('../.assets/models/real_hatgan_x4.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_hatgan_x4.onnx',
'path': resolve_relative_path('../.assets/models/real_hatgan_x4.onnx')
}
},
'size': (256, 16, 8),
'scale': 4
},
'span_kendata_x4':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/span_kendata_x4.hash',
'path': resolve_relative_path('../.assets/models/span_kendata_x4.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/span_kendata_x4.onnx',
'path': resolve_relative_path('../.assets/models/span_kendata_x4.onnx')
}
},
'size': (128, 8, 4),
'scale': 4
},
'ultra_sharp_x4':
{
'hashes':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ultra_sharp_x4.hash',
'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.hash')
}
},
'sources':
{
'frame_enhancer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ultra_sharp_x4.onnx',
'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.onnx')
}
},
'size': (128, 8, 4),
'scale': 4
}
}
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
return MODEL_SET[state_manager.get_item('frame_enhancer_model')]
def register_args(program : ArgumentParser) -> None:
group_processors = find_argument_group(program, 'processors')
if group_processors:
group_processors.add_argument('--frame-enhancer-model', help = wording.get('help.frame_enhancer_model'), default = config.get_str_value('processors.frame_enhancer_model', 'span_kendata_x4'), choices = processors_choices.frame_enhancer_models)
group_processors.add_argument('--frame-enhancer-blend', help = wording.get('help.frame_enhancer_blend'), type = int, default = config.get_int_value('processors.frame_enhancer_blend', '80'), choices = processors_choices.frame_enhancer_blend_range, metavar = create_int_metavar(processors_choices.frame_enhancer_blend_range))
facefusion.jobs.job_store.register_step_keys([ 'frame_enhancer_model', 'frame_enhancer_blend' ])
def apply_args(args : Args) -> None:
state_manager.init_item('frame_enhancer_model', args.get('frame_enhancer_model'))
state_manager.init_item('frame_enhancer_blend', args.get('frame_enhancer_blend'))
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_hashes = get_model_options().get('hashes')
model_sources = get_model_options().get('sources')
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
def pre_process(mode : ProcessMode) -> bool:
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper())
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
clear_inference_pool()
if state_manager.get_item('video_memory_strategy') == 'strict':
content_analyser.clear_inference_pool()
def enhance_frame(temp_vision_frame : VisionFrame) -> VisionFrame:
frame_enhancer = get_inference_pool().get('frame_enhancer')
model_size = get_model_options().get('size')
model_scale = get_model_options().get('scale')
temp_height, temp_width = temp_vision_frame.shape[:2]
tile_vision_frames, pad_width, pad_height = create_tile_frames(temp_vision_frame, model_size)
for index, tile_vision_frame in enumerate(tile_vision_frames):
with conditional_thread_semaphore():
tile_vision_frame = frame_enhancer.run(None,
{
'input': prepare_tile_frame(tile_vision_frame)
})[0]
tile_vision_frames[index] = normalize_tile_frame(tile_vision_frame)
merge_vision_frame = merge_tile_frames(tile_vision_frames, temp_width * model_scale, temp_height * model_scale, pad_width * model_scale, pad_height * model_scale, (model_size[0] * model_scale, model_size[1] * model_scale, model_size[2] * model_scale))
temp_vision_frame = blend_frame(temp_vision_frame, merge_vision_frame)
return temp_vision_frame
def prepare_tile_frame(vision_tile_frame : VisionFrame) -> VisionFrame:
vision_tile_frame = numpy.expand_dims(vision_tile_frame[:, :, ::-1], axis = 0)
vision_tile_frame = vision_tile_frame.transpose(0, 3, 1, 2)
vision_tile_frame = vision_tile_frame.astype(numpy.float32) / 255
return vision_tile_frame
def normalize_tile_frame(vision_tile_frame : VisionFrame) -> VisionFrame:
vision_tile_frame = vision_tile_frame.transpose(0, 2, 3, 1).squeeze(0) * 255
vision_tile_frame = vision_tile_frame.clip(0, 255).astype(numpy.uint8)[:, :, ::-1]
return vision_tile_frame
def blend_frame(temp_vision_frame : VisionFrame, merge_vision_frame : VisionFrame) -> VisionFrame:
frame_enhancer_blend = 1 - (state_manager.get_item('frame_enhancer_blend') / 100)
temp_vision_frame = cv2.resize(temp_vision_frame, (merge_vision_frame.shape[1], merge_vision_frame.shape[0]))
temp_vision_frame = cv2.addWeighted(temp_vision_frame, frame_enhancer_blend, merge_vision_frame, 1 - frame_enhancer_blend, 0)
return temp_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
pass
def process_frame(inputs : FrameEnhancerInputs) -> VisionFrame:
target_vision_frame = inputs.get('target_vision_frame')
return enhance_frame(target_vision_frame)
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
for queue_payload in process_manager.manage(queue_payloads):
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
processors.multi_process_frames(None, temp_frame_paths, process_frames)