facetest / facefusion /typing.py
LULDev's picture
Upload folder using huggingface_hub
a1da63c verified
from collections import namedtuple
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, TypedDict
import numpy
from numpy.typing import NDArray
from onnxruntime import InferenceSession
Scale = float
Score = float
Angle = int
BoundingBox = NDArray[Any]
FaceLandmark5 = NDArray[Any]
FaceLandmark68 = NDArray[Any]
FaceLandmarkSet = TypedDict('FaceLandmarkSet',
{
'5' : FaceLandmark5, #type:ignore[valid-type]
'5/68' : FaceLandmark5, #type:ignore[valid-type]
'68' : FaceLandmark68, #type:ignore[valid-type]
'68/5' : FaceLandmark68 #type:ignore[valid-type]
})
FaceScoreSet = TypedDict('FaceScoreSet',
{
'detector' : Score,
'landmarker' : Score
})
Embedding = NDArray[numpy.float64]
Face = namedtuple('Face',
[
'bounding_box',
'score_set',
'landmark_set',
'angle',
'embedding',
'normed_embedding',
'gender',
'age'
])
FaceSet = Dict[str, List[Face]]
FaceStore = TypedDict('FaceStore',
{
'static_faces' : FaceSet,
'reference_faces': FaceSet
})
VisionFrame = NDArray[Any]
Mask = NDArray[Any]
Points = NDArray[Any]
Distance = NDArray[Any]
Matrix = NDArray[Any]
Anchors = NDArray[Any]
Translation = NDArray[Any]
AudioBuffer = bytes
Audio = NDArray[Any]
AudioChunk = NDArray[Any]
AudioFrame = NDArray[Any]
Spectrogram = NDArray[Any]
Mel = NDArray[Any]
MelFilterBank = NDArray[Any]
Expression = NDArray[Any]
MotionPoints = NDArray[Any]
Fps = float
Padding = Tuple[int, int, int, int]
Resolution = Tuple[int, int]
ProcessState = Literal['checking', 'processing', 'stopping', 'pending']
QueuePayload = TypedDict('QueuePayload',
{
'frame_number' : int,
'frame_path' : str
})
Args = Dict[str, Any]
UpdateProgress = Callable[[int], None]
ProcessFrames = Callable[[List[str], List[QueuePayload], UpdateProgress], None]
ProcessStep = Callable[[str, int, Args], bool]
Content = Dict[str, Any]
WarpTemplate = Literal['arcface_112_v1', 'arcface_112_v2', 'arcface_128_v2', 'ffhq_512']
WarpTemplateSet = Dict[WarpTemplate, NDArray[Any]]
ProcessMode = Literal['output', 'preview', 'stream']
ErrorCode = Literal[0, 1, 2, 3, 4]
LogLevel = Literal['error', 'warn', 'info', 'debug']
TableHeaders = List[str]
TableContents = List[List[Any]]
VideoMemoryStrategy = Literal['strict', 'moderate', 'tolerant']
FaceDetectorModel = Literal['many', 'retinaface', 'scrfd', 'yoloface']
FaceLandmarkerModel = Literal['many', '2dfan4', 'peppa_wutz']
FaceDetectorSet = Dict[FaceDetectorModel, List[str]]
FaceSelectorMode = Literal['many', 'one', 'reference']
FaceSelectorOrder = Literal['left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best']
FaceSelectorAge = Literal['child', 'teen', 'adult', 'senior']
FaceSelectorGender = Literal['female', 'male']
FaceMaskType = Literal['box', 'occlusion', 'region']
FaceMaskRegion = Literal['skin', 'left-eyebrow', 'right-eyebrow', 'left-eye', 'right-eye', 'glasses', 'nose', 'mouth', 'upper-lip', 'lower-lip']
TempFrameFormat = Literal['jpg', 'png', 'bmp']
OutputAudioEncoder = Literal['aac', 'libmp3lame', 'libopus', 'libvorbis']
OutputVideoEncoder = Literal['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc', 'h264_amf', 'hevc_amf', 'h264_videotoolbox', 'hevc_videotoolbox']
OutputVideoPreset = Literal['ultrafast', 'superfast', 'veryfast', 'faster', 'fast', 'medium', 'slow', 'slower', 'veryslow']
Download = TypedDict('Download',
{
'url' : str,
'path' : str
})
DownloadSet = Dict[str, Download]
ModelOptions = Dict[str, Any]
ModelSet = Dict[str, ModelOptions]
ModelInitializer = NDArray[Any]
ExecutionProviderKey = Literal['cpu', 'coreml', 'cuda', 'directml', 'openvino', 'rocm', 'tensorrt']
ExecutionProviderValue = Literal['CPUExecutionProvider', 'CoreMLExecutionProvider', 'CUDAExecutionProvider', 'DmlExecutionProvider', 'OpenVINOExecutionProvider', 'ROCMExecutionProvider', 'TensorrtExecutionProvider']
ExecutionProviderSet = Dict[ExecutionProviderKey, ExecutionProviderValue]
ValueAndUnit = TypedDict('ValueAndUnit',
{
'value' : int,
'unit' : str
})
ExecutionDeviceFramework = TypedDict('ExecutionDeviceFramework',
{
'name' : str,
'version' : str
})
ExecutionDeviceProduct = TypedDict('ExecutionDeviceProduct',
{
'vendor' : str,
'name' : str
})
ExecutionDeviceVideoMemory = TypedDict('ExecutionDeviceVideoMemory',
{
'total' : ValueAndUnit,
'free' : ValueAndUnit
})
ExecutionDeviceUtilization = TypedDict('ExecutionDeviceUtilization',
{
'gpu' : ValueAndUnit,
'memory' : ValueAndUnit
})
ExecutionDevice = TypedDict('ExecutionDevice',
{
'driver_version' : str,
'framework' : ExecutionDeviceFramework,
'product' : ExecutionDeviceProduct,
'video_memory' : ExecutionDeviceVideoMemory,
'utilization' : ExecutionDeviceUtilization
})
AppContext = Literal['cli', 'ui']
InferencePool = Dict[str, InferenceSession]
InferencePoolSet = Dict[AppContext, Dict[str, InferencePool]]
UiWorkflow = Literal['instant_runner', 'job_runner', 'job_manager']
JobStore = TypedDict('JobStore',
{
'job_keys' : List[str],
'step_keys' : List[str]
})
JobOutputSet = Dict[str, List[str]]
JobStatus = Literal['drafted', 'queued', 'completed', 'failed']
JobStepStatus = Literal['drafted', 'queued', 'started', 'completed', 'failed']
JobStep = TypedDict('JobStep',
{
'args' : Args,
'status' : JobStepStatus
})
Job = TypedDict('Job',
{
'version' : str,
'date_created' : str,
'date_updated' : Optional[str],
'steps' : List[JobStep]
})
JobSet = Dict[str, Job]
StateKey = Literal\
[
'command',
'config_path',
'jobs_path',
'source_paths',
'target_path',
'output_path',
'face_detector_model',
'face_detector_size',
'face_detector_angles',
'face_detector_score',
'face_landmarker_model',
'face_landmarker_score',
'face_selector_mode',
'face_selector_order',
'face_selector_age',
'face_selector_gender',
'reference_face_position',
'reference_face_distance',
'reference_frame_number',
'face_mask_types',
'face_mask_blur',
'face_mask_padding',
'face_mask_regions',
'trim_frame_start',
'trim_frame_end',
'temp_frame_format',
'keep_temp',
'output_image_quality',
'output_image_resolution',
'output_audio_encoder',
'output_video_encoder',
'output_video_preset',
'output_video_quality',
'output_video_resolution',
'output_video_fps',
'skip_audio',
'processors',
'open_browser',
'ui_layouts',
'ui_workflow',
'execution_device_id',
'execution_providers',
'execution_thread_count',
'execution_queue_count',
'video_memory_strategy',
'system_memory_limit',
'skip_download',
'log_level',
'job_id',
'job_status',
'step_index'
]
State = TypedDict('State',
{
'command' : str,
'config_path' : str,
'jobs_path' : str,
'source_paths' : List[str],
'target_path' : str,
'output_path' : str,
'face_detector_model' : FaceDetectorModel,
'face_detector_size' : str,
'face_detector_angles' : List[Angle],
'face_detector_score' : Score,
'face_landmarker_model' : FaceLandmarkerModel,
'face_landmarker_score' : Score,
'face_selector_mode' : FaceSelectorMode,
'face_selector_order' : FaceSelectorOrder,
'face_selector_age' : FaceSelectorAge,
'face_selector_gender' : FaceSelectorGender,
'reference_face_position' : int,
'reference_face_distance' : float,
'reference_frame_number' : int,
'face_mask_types' : List[FaceMaskType],
'face_mask_blur' : float,
'face_mask_padding' : Padding,
'face_mask_regions' : List[FaceMaskRegion],
'trim_frame_start' : int,
'trim_frame_end' : int,
'temp_frame_format' : TempFrameFormat,
'keep_temp' : bool,
'output_image_quality' : int,
'output_image_resolution' : str,
'output_audio_encoder' : OutputAudioEncoder,
'output_video_encoder' : OutputVideoEncoder,
'output_video_preset' : OutputVideoPreset,
'output_video_quality' : int,
'output_video_resolution' : str,
'output_video_fps' : float,
'skip_audio' : bool,
'processors' : List[str],
'open_browser' : bool,
'ui_layouts' : List[str],
'ui_workflow' : UiWorkflow,
'execution_device_id': str,
'execution_providers': List[ExecutionProviderKey],
'execution_thread_count': int,
'execution_queue_count': int,
'video_memory_strategy': VideoMemoryStrategy,
'system_memory_limit': int,
'skip_download': bool,
'log_level': LogLevel,
'job_id': str,
'job_status': JobStatus,
'step_index': int
})
StateSet = Dict[AppContext, State]