LULDev's picture
Upload folder using huggingface_hub
a1da63c verified
import hashlib
import os
import statistics
import tempfile
from time import perf_counter
from typing import Any, Dict, Generator, List, Optional
import gradio
from facefusion import state_manager, wording
from facefusion.core import conditional_process
from facefusion.filesystem import is_video
from facefusion.memory import limit_system_memory
from facefusion.uis.core import get_ui_component
from facefusion.vision import count_video_frame_total, detect_video_fps, detect_video_resolution, pack_resolution
BENCHMARK_BENCHMARKS_DATAFRAME : Optional[gradio.Dataframe] = None
BENCHMARK_START_BUTTON : Optional[gradio.Button] = None
BENCHMARK_CLEAR_BUTTON : Optional[gradio.Button] = None
BENCHMARKS : Dict[str, str] =\
{
'240p': '.assets/examples/target-240p.mp4',
'360p': '.assets/examples/target-360p.mp4',
'540p': '.assets/examples/target-540p.mp4',
'720p': '.assets/examples/target-720p.mp4',
'1080p': '.assets/examples/target-1080p.mp4',
'1440p': '.assets/examples/target-1440p.mp4',
'2160p': '.assets/examples/target-2160p.mp4'
}
def render() -> None:
global BENCHMARK_BENCHMARKS_DATAFRAME
global BENCHMARK_START_BUTTON
global BENCHMARK_CLEAR_BUTTON
BENCHMARK_BENCHMARKS_DATAFRAME = gradio.Dataframe(
headers =
[
'target_path',
'benchmark_cycles',
'average_run',
'fastest_run',
'slowest_run',
'relative_fps'
],
datatype =
[
'str',
'number',
'number',
'number',
'number',
'number'
],
show_label = False
)
BENCHMARK_START_BUTTON = gradio.Button(
value = wording.get('uis.start_button'),
variant = 'primary',
size = 'sm'
)
def listen() -> None:
benchmark_runs_checkbox_group = get_ui_component('benchmark_runs_checkbox_group')
benchmark_cycles_slider = get_ui_component('benchmark_cycles_slider')
if benchmark_runs_checkbox_group and benchmark_cycles_slider:
BENCHMARK_START_BUTTON.click(start, inputs = [ benchmark_runs_checkbox_group, benchmark_cycles_slider ], outputs = BENCHMARK_BENCHMARKS_DATAFRAME)
def suggest_output_path(target_path : str) -> Optional[str]:
if is_video(target_path):
_, target_extension = os.path.splitext(target_path)
return os.path.join(tempfile.gettempdir(), hashlib.sha1().hexdigest()[:8] + target_extension)
return None
def start(benchmark_runs : List[str], benchmark_cycles : int) -> Generator[List[Any], None, None]:
state_manager.init_item('source_paths', [ '.assets/examples/source.jpg', '.assets/examples/source.mp3' ])
state_manager.init_item('face_landmarker_score', 0)
state_manager.init_item('temp_frame_format', 'bmp')
state_manager.init_item('output_video_preset', 'ultrafast')
state_manager.sync_item('execution_providers')
state_manager.sync_item('execution_thread_count')
state_manager.sync_item('execution_queue_count')
state_manager.sync_item('system_memory_limit')
benchmark_results = []
target_paths = [ BENCHMARKS[benchmark_run] for benchmark_run in benchmark_runs if benchmark_run in BENCHMARKS ]
if target_paths:
pre_process()
for target_path in target_paths:
state_manager.init_item('target_path', target_path)
state_manager.init_item('output_path', suggest_output_path(state_manager.get_item('target_path')))
benchmark_results.append(benchmark(benchmark_cycles))
yield benchmark_results
def pre_process() -> None:
system_memory_limit = state_manager.get_item('system_memory_limit')
if system_memory_limit and system_memory_limit > 0:
limit_system_memory(system_memory_limit)
def benchmark(benchmark_cycles : int) -> List[Any]:
process_times = []
video_frame_total = count_video_frame_total(state_manager.get_item('target_path'))
output_video_resolution = detect_video_resolution(state_manager.get_item('target_path'))
state_manager.init_item('output_video_resolution', pack_resolution(output_video_resolution))
state_manager.init_item('output_video_fps', detect_video_fps(state_manager.get_item('target_path')))
conditional_process()
for index in range(benchmark_cycles):
start_time = perf_counter()
conditional_process()
end_time = perf_counter()
process_times.append(end_time - start_time)
average_run = round(statistics.mean(process_times), 2)
fastest_run = round(min(process_times), 2)
slowest_run = round(max(process_times), 2)
relative_fps = round(video_frame_total * benchmark_cycles / sum(process_times), 2)
return\
[
state_manager.get_item('target_path'),
benchmark_cycles,
average_run,
fastest_run,
slowest_run,
relative_fps
]