LULDev's picture
Upload folder using huggingface_hub
a1da63c verified
raw
history blame
12.7 kB
from argparse import ArgumentParser
from typing import Any, List
import cv2
import numpy
from cv2.typing import Size
from numpy.typing import NDArray
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
from facefusion.common_helper import create_int_metavar, map_float
from facefusion.download import conditional_download_hashes, conditional_download_sources
from facefusion.face_analyser import get_many_faces, get_one_face
from facefusion.face_helper import merge_matrix, paste_back, warp_face_by_face_landmark_5
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
from facefusion.processors import choices as processors_choices
from facefusion.processors.typing import AgeModifierInputs
from facefusion.program_helper import find_argument_group
from facefusion.thread_helper import thread_semaphore
from facefusion.typing import Args, Face, InferencePool, Mask, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import read_image, read_static_image, write_image
MODEL_SET : ModelSet =\
{
'styleganex_age':
{
'hashes':
{
'age_modifier':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/styleganex_age.hash',
'path': resolve_relative_path('../.assets/models/styleganex_age.hash')
}
},
'sources':
{
'age_modifier':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/styleganex_age.onnx',
'path': resolve_relative_path('../.assets/models/styleganex_age.onnx')
}
},
'template': 'ffhq_512',
'size': (512, 512)
}
}
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
return MODEL_SET[state_manager.get_item('age_modifier_model')]
def register_args(program : ArgumentParser) -> None:
group_processors = find_argument_group(program, 'processors')
if group_processors:
group_processors.add_argument('--age-modifier-model', help = wording.get('help.age_modifier_model'), default = config.get_str_value('processors.age_modifier_model', 'styleganex_age'), choices = processors_choices.age_modifier_models)
group_processors.add_argument('--age-modifier-direction', help = wording.get('help.age_modifier_direction'), type = int, default = config.get_int_value('processors.age_modifier_direction', '0'), choices = processors_choices.age_modifier_direction_range, metavar = create_int_metavar(processors_choices.age_modifier_direction_range))
facefusion.jobs.job_store.register_step_keys([ 'age_modifier_model', 'age_modifier_direction' ])
def apply_args(args : Args) -> None:
state_manager.init_item('age_modifier_model', args.get('age_modifier_model'))
state_manager.init_item('age_modifier_direction', args.get('age_modifier_direction'))
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_hashes = get_model_options().get('hashes')
model_sources = get_model_options().get('sources')
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
def pre_process(mode : ProcessMode) -> bool:
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper())
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
clear_inference_pool()
if state_manager.get_item('video_memory_strategy') == 'strict':
content_analyser.clear_inference_pool()
face_classifier.clear_inference_pool()
face_detector.clear_inference_pool()
face_landmarker.clear_inference_pool()
face_masker.clear_inference_pool()
face_recognizer.clear_inference_pool()
def modify_age(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_model_options().get('template')
model_size = get_model_options().get('size')
face_landmark_5 = target_face.landmark_set.get('5/68').copy()
extend_face_landmark_5 = (face_landmark_5 - face_landmark_5[2]) * 2 + face_landmark_5[2]
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_template, (256, 256))
extend_vision_frame, extend_affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, extend_face_landmark_5, model_template, model_size)
extend_vision_frame_raw = extend_vision_frame.copy()
box_mask = create_static_box_mask(model_size, state_manager.get_item('face_mask_blur'), (0, 0, 0, 0))
crop_masks =\
[
box_mask
]
if 'occlusion' in state_manager.get_item('face_mask_types'):
occlusion_mask = create_occlusion_mask(crop_vision_frame)
combined_matrix = merge_matrix([ extend_affine_matrix, cv2.invertAffineTransform(affine_matrix) ])
occlusion_mask = cv2.warpAffine(occlusion_mask, combined_matrix, model_size)
crop_masks.append(occlusion_mask)
crop_vision_frame = prepare_vision_frame(crop_vision_frame)
extend_vision_frame = prepare_vision_frame(extend_vision_frame)
extend_vision_frame = apply_modify(crop_vision_frame, extend_vision_frame)
extend_vision_frame = normalize_extend_frame(extend_vision_frame)
extend_vision_frame = fix_color(extend_vision_frame_raw, extend_vision_frame)
extend_crop_mask = cv2.pyrUp(numpy.minimum.reduce(crop_masks).clip(0, 1))
extend_affine_matrix *= extend_vision_frame.shape[0] / 512
paste_vision_frame = paste_back(temp_vision_frame, extend_vision_frame, extend_crop_mask, extend_affine_matrix)
return paste_vision_frame
def apply_modify(crop_vision_frame : VisionFrame, crop_vision_frame_extended : VisionFrame) -> VisionFrame:
age_modifier = get_inference_pool().get('age_modifier')
age_modifier_inputs = {}
for age_modifier_input in age_modifier.get_inputs():
if age_modifier_input.name == 'target':
age_modifier_inputs[age_modifier_input.name] = crop_vision_frame
if age_modifier_input.name == 'target_with_background':
age_modifier_inputs[age_modifier_input.name] = crop_vision_frame_extended
if age_modifier_input.name == 'direction':
age_modifier_inputs[age_modifier_input.name] = prepare_direction(state_manager.get_item('age_modifier_direction'))
with thread_semaphore():
crop_vision_frame = age_modifier.run(None, age_modifier_inputs)[0][0]
return crop_vision_frame
def fix_color(extend_vision_frame_raw : VisionFrame, extend_vision_frame : VisionFrame) -> VisionFrame:
color_difference = compute_color_difference(extend_vision_frame_raw, extend_vision_frame, (48, 48))
color_difference_mask = create_static_box_mask(extend_vision_frame.shape[:2][::-1], 1.0, (0, 0, 0, 0))
color_difference_mask = numpy.stack((color_difference_mask, ) * 3, axis = -1)
extend_vision_frame = normalize_color_difference(color_difference, color_difference_mask, extend_vision_frame)
return extend_vision_frame
def compute_color_difference(extend_vision_frame_raw : VisionFrame, extend_vision_frame : VisionFrame, size : Size) -> VisionFrame:
extend_vision_frame_raw = extend_vision_frame_raw.astype(numpy.float32) / 255
extend_vision_frame_raw = cv2.resize(extend_vision_frame_raw, size, interpolation = cv2.INTER_AREA)
extend_vision_frame = extend_vision_frame.astype(numpy.float32) / 255
extend_vision_frame = cv2.resize(extend_vision_frame, size, interpolation = cv2.INTER_AREA)
color_difference = extend_vision_frame_raw - extend_vision_frame
return color_difference
def normalize_color_difference(color_difference : VisionFrame, color_difference_mask : Mask, extend_vision_frame : VisionFrame) -> VisionFrame:
color_difference = cv2.resize(color_difference, extend_vision_frame.shape[:2][::-1], interpolation = cv2.INTER_CUBIC)
color_difference_mask = 1 - color_difference_mask.clip(0, 0.75)
extend_vision_frame = extend_vision_frame.astype(numpy.float32) / 255
extend_vision_frame += color_difference * color_difference_mask
extend_vision_frame = extend_vision_frame.clip(0, 1)
extend_vision_frame = numpy.multiply(extend_vision_frame, 255).astype(numpy.uint8)
return extend_vision_frame
def prepare_direction(direction : int) -> NDArray[Any]:
direction = map_float(float(direction), -100, 100, 2.5, -2.5) #type:ignore[assignment]
return numpy.array(direction).astype(numpy.float32)
def prepare_vision_frame(vision_frame : VisionFrame) -> VisionFrame:
vision_frame = vision_frame[:, :, ::-1] / 255.0
vision_frame = (vision_frame - 0.5) / 0.5
vision_frame = numpy.expand_dims(vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
return vision_frame
def normalize_extend_frame(extend_vision_frame : VisionFrame) -> VisionFrame:
extend_vision_frame = numpy.clip(extend_vision_frame, -1, 1)
extend_vision_frame = (extend_vision_frame + 1) / 2
extend_vision_frame = extend_vision_frame.transpose(1, 2, 0).clip(0, 255)
extend_vision_frame = (extend_vision_frame * 255.0)
extend_vision_frame = extend_vision_frame.astype(numpy.uint8)[:, :, ::-1]
extend_vision_frame = cv2.pyrDown(extend_vision_frame)
return extend_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
return modify_age(target_face, temp_vision_frame)
def process_frame(inputs : AgeModifierInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
target_vision_frame = inputs.get('target_vision_frame')
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))
if state_manager.get_item('face_selector_mode') == 'many':
if many_faces:
for target_face in many_faces:
target_vision_frame = modify_age(target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'one':
target_face = get_one_face(many_faces)
if target_face:
target_vision_frame = modify_age(target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'reference':
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = modify_age(similar_face, target_vision_frame)
return target_vision_frame
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
for queue_payload in process_manager.manage(queue_payloads):
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_path : str, target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
processors.multi_process_frames(None, temp_frame_paths, process_frames)