from typing import Any, Dict import numpy from facefusion import logger, state_manager from facefusion.face_store import get_face_store from facefusion.typing import FaceSet def create_statistics(static_faces : FaceSet) -> Dict[str, Any]: face_detector_scores = [] face_landmarker_scores = [] statistics =\ { 'min_face_detector_score': 0, 'min_face_landmarker_score': 0, 'max_face_detector_score': 0, 'max_face_landmarker_score': 0, 'average_face_detector_score': 0, 'average_face_landmarker_score': 0, 'total_face_landmark_5_fallbacks': 0, 'total_frames_with_faces': 0, 'total_faces': 0 } for faces in static_faces.values(): statistics['total_frames_with_faces'] = statistics.get('total_frames_with_faces') + 1 for face in faces: statistics['total_faces'] = statistics.get('total_faces') + 1 face_detector_scores.append(face.score_set.get('detector')) face_landmarker_scores.append(face.score_set.get('landmarker')) if numpy.array_equal(face.landmark_set.get('5'), face.landmark_set.get('5/68')): statistics['total_face_landmark_5_fallbacks'] = statistics.get('total_face_landmark_5_fallbacks') + 1 if face_detector_scores: statistics['min_face_detector_score'] = round(min(face_detector_scores), 2) statistics['max_face_detector_score'] = round(max(face_detector_scores), 2) statistics['average_face_detector_score'] = round(numpy.mean(face_detector_scores), 2) if face_landmarker_scores: statistics['min_face_landmarker_score'] = round(min(face_landmarker_scores), 2) statistics['max_face_landmarker_score'] = round(max(face_landmarker_scores), 2) statistics['average_face_landmarker_score'] = round(numpy.mean(face_landmarker_scores), 2) return statistics def conditional_log_statistics() -> None: if state_manager.get_item('log_level') == 'debug': statistics = create_statistics(get_face_store().get('static_faces')) for name, value in statistics.items(): logger.debug(str(name) + ': ' + str(value), __name__.upper())