from typing import Tuple import numpy from facefusion import inference_manager from facefusion.download import conditional_download_hashes, conditional_download_sources from facefusion.face_helper import warp_face_by_translation from facefusion.filesystem import resolve_relative_path from facefusion.thread_helper import conditional_thread_semaphore from facefusion.typing import BoundingBox, InferencePool, ModelOptions, ModelSet, VisionFrame MODEL_SET : ModelSet =\ { 'gender_age': { 'hashes': { 'gender_age': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gender_age.hash', 'path': resolve_relative_path('../.assets/models/gender_age.hash') } }, 'sources': { 'gender_age': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gender_age.onnx', 'path': resolve_relative_path('../.assets/models/gender_age.onnx') } } } } def get_inference_pool() -> InferencePool: model_sources = get_model_options().get('sources') return inference_manager.get_inference_pool(__name__, model_sources) def clear_inference_pool() -> None: inference_manager.clear_inference_pool(__name__) def get_model_options() -> ModelOptions: return MODEL_SET.get('gender_age') def pre_check() -> bool: download_directory_path = resolve_relative_path('../.assets/models') model_hashes = get_model_options().get('hashes') model_sources = get_model_options().get('sources') return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources) def detect_gender_age(temp_vision_frame : VisionFrame, bounding_box : BoundingBox) -> Tuple[int, int]: gender_age = get_inference_pool().get('gender_age') bounding_box = bounding_box.reshape(2, -1) scale = 64 / numpy.subtract(*bounding_box[::-1]).max() translation = 48 - bounding_box.sum(axis = 0) * scale * 0.5 crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (96, 96)) crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0) with conditional_thread_semaphore(): prediction = gender_age.run(None, { 'input': crop_vision_frame })[0][0] gender = int(numpy.argmax(prediction[:2])) age = int(numpy.round(prediction[2] * 100)) return gender, age