from typing import Tuple import cv2 import numpy from facefusion import inference_manager, state_manager from facefusion.download import conditional_download_hashes, conditional_download_sources from facefusion.face_helper import create_rotated_matrix_and_size, estimate_matrix_by_face_landmark_5, transform_points, warp_face_by_translation from facefusion.filesystem import resolve_relative_path from facefusion.thread_helper import conditional_thread_semaphore from facefusion.typing import Angle, BoundingBox, DownloadSet, FaceLandmark5, FaceLandmark68, InferencePool, ModelSet, Score, VisionFrame MODEL_SET : ModelSet =\ { '2dfan4': { 'hashes': { '2dfan4': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/2dfan4.hash', 'path': resolve_relative_path('../.assets/models/2dfan4.hash') } }, 'sources': { '2dfan4': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/2dfan4.onnx', 'path': resolve_relative_path('../.assets/models/2dfan4.onnx') } } }, 'peppa_wutz': { 'hashes': { 'peppa_wutz': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/peppa_wutz.hash', 'path': resolve_relative_path('../.assets/models/peppa_wutz.hash') } }, 'sources': { 'peppa_wutz': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/peppa_wutz.onnx', 'path': resolve_relative_path('../.assets/models/peppa_wutz.onnx') } } }, 'face_landmarker_68_5': { 'hashes': { 'face_landmarker_68_5': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/face_landmarker_68_5.hash', 'path': resolve_relative_path('../.assets/models/face_landmarker_68_5.hash') } }, 'sources': { 'face_landmarker_68_5': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/face_landmarker_68_5.onnx', 'path': resolve_relative_path('../.assets/models/face_landmarker_68_5.onnx') } } } } def get_inference_pool() -> InferencePool: _, model_sources = collect_model_downloads() return inference_manager.get_inference_pool(__name__, model_sources) def clear_inference_pool() -> None: inference_manager.clear_inference_pool(__name__) def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]: model_hashes =\ { 'face_landmarker_68_5': MODEL_SET.get('face_landmarker_68_5').get('hashes').get('face_landmarker_68_5') } model_sources =\ { 'face_landmarker_68_5': MODEL_SET.get('face_landmarker_68_5').get('sources').get('face_landmarker_68_5') } if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]: model_hashes['2dfan4'] = MODEL_SET.get('2dfan4').get('hashes').get('2dfan4') model_sources['2dfan4'] = MODEL_SET.get('2dfan4').get('sources').get('2dfan4') if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]: model_hashes['peppa_wutz'] = MODEL_SET.get('peppa_wutz').get('hashes').get('peppa_wutz') model_sources['peppa_wutz'] = MODEL_SET.get('peppa_wutz').get('sources').get('peppa_wutz') return model_hashes, model_sources def pre_check() -> bool: download_directory_path = resolve_relative_path('../.assets/models') model_hashes, model_sources = collect_model_downloads() return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources) def detect_face_landmarks(vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]: face_landmark_2dfan4 = None face_landmark_peppa_wutz = None face_landmark_score_2dfan4 = 0.0 face_landmark_score_peppa_wutz = 0.0 if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]: face_landmark_2dfan4, face_landmark_score_2dfan4 = detect_with_2dfan4(vision_frame, bounding_box, face_angle) if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]: face_landmark_peppa_wutz, face_landmark_score_peppa_wutz = detect_with_peppa_wutz(vision_frame, bounding_box, face_angle) if face_landmark_score_2dfan4 > face_landmark_score_peppa_wutz: return face_landmark_2dfan4, face_landmark_score_2dfan4 return face_landmark_peppa_wutz, face_landmark_score_peppa_wutz def detect_with_2dfan4(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]: face_landmarker = get_inference_pool().get('2dfan4') scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None) translation = (256 - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5 rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, (256, 256)) crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (256, 256)) crop_vision_frame = cv2.warpAffine(crop_vision_frame, rotated_matrix, rotated_size) crop_vision_frame = conditional_optimize_contrast(crop_vision_frame) crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0 with conditional_thread_semaphore(): face_landmark_68, face_heatmap = face_landmarker.run(None, { 'input': [ crop_vision_frame ] }) face_landmark_68 = face_landmark_68[:, :, :2][0] / 64 * 256 face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(rotated_matrix)) face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(affine_matrix)) face_landmark_score_68 = numpy.amax(face_heatmap, axis = (2, 3)) face_landmark_score_68 = numpy.mean(face_landmark_score_68) return face_landmark_68, face_landmark_score_68 def detect_with_peppa_wutz(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]: face_landmarker = get_inference_pool().get('peppa_wutz') scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None) translation = (256 - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5 rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, (256, 256)) crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (256, 256)) crop_vision_frame = cv2.warpAffine(crop_vision_frame, rotated_matrix, rotated_size) crop_vision_frame = conditional_optimize_contrast(crop_vision_frame) crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0 crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0) with conditional_thread_semaphore(): prediction = face_landmarker.run(None, { 'input': crop_vision_frame })[0] face_landmark_68 = prediction.reshape(-1, 3)[:, :2] / 64 * 256 face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(rotated_matrix)) face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(affine_matrix)) face_landmark_score_68 = prediction.reshape(-1, 3)[:, 2].mean() return face_landmark_68, face_landmark_score_68 def conditional_optimize_contrast(crop_vision_frame : VisionFrame) -> VisionFrame: crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_RGB2Lab) if numpy.mean(crop_vision_frame[:, :, 0]) < 30: # type:ignore[arg-type] crop_vision_frame[:, :, 0] = cv2.createCLAHE(clipLimit = 2).apply(crop_vision_frame[:, :, 0]) crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_Lab2RGB) return crop_vision_frame def estimate_face_landmark_68_5(face_landmark_5 : FaceLandmark5) -> FaceLandmark68: face_landmarker = get_inference_pool().get('face_landmarker_68_5') affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, 'ffhq_512', (1, 1)) face_landmark_5 = cv2.transform(face_landmark_5.reshape(1, -1, 2), affine_matrix).reshape(-1, 2) with conditional_thread_semaphore(): face_landmark_68_5 = face_landmarker.run(None, { 'input': [ face_landmark_5 ] })[0][0] face_landmark_68_5 = cv2.transform(face_landmark_68_5.reshape(1, -1, 2), cv2.invertAffineTransform(affine_matrix)).reshape(-1, 2) return face_landmark_68_5