from typing import Tuple import numpy from facefusion import inference_manager from facefusion.download import conditional_download_hashes, conditional_download_sources from facefusion.face_helper import warp_face_by_face_landmark_5 from facefusion.filesystem import resolve_relative_path from facefusion.thread_helper import conditional_thread_semaphore from facefusion.typing import Embedding, FaceLandmark5, InferencePool, ModelOptions, ModelSet, VisionFrame MODEL_SET : ModelSet =\ { 'arcface': { 'hashes': { 'face_recognizer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.hash', 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash') } }, 'sources': { 'face_recognizer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.onnx', 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx') } } } } def get_inference_pool() -> InferencePool: model_sources = get_model_options().get('sources') return inference_manager.get_inference_pool(__name__, model_sources) def clear_inference_pool() -> None: inference_manager.clear_inference_pool(__name__) def get_model_options() -> ModelOptions: return MODEL_SET.get('arcface') def pre_check() -> bool: download_directory_path = resolve_relative_path('../.assets/models') model_hashes = get_model_options().get('hashes') model_sources = get_model_options().get('sources') return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources) def calc_embedding(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Embedding, Embedding]: face_recognizer = get_inference_pool().get('face_recognizer') crop_vision_frame, matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, 'arcface_112_v2', (112, 112)) crop_vision_frame = crop_vision_frame / 127.5 - 1 crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0) with conditional_thread_semaphore(): embedding = face_recognizer.run(None, { 'input': crop_vision_frame })[0] embedding = embedding.ravel() normed_embedding = embedding / numpy.linalg.norm(embedding) return embedding, normed_embedding