from functools import lru_cache from time import sleep from typing import List import onnx from onnxruntime import InferenceSession from facefusion import process_manager, state_manager from facefusion.app_context import detect_app_context from facefusion.execution import create_execution_providers, has_execution_provider from facefusion.thread_helper import thread_lock from facefusion.typing import DownloadSet, ExecutionProviderKey, InferencePool, InferencePoolSet, ModelInitializer INFERENCE_POOLS : InferencePoolSet =\ { 'cli': {}, # type:ignore[typeddict-item] 'ui': {} # type:ignore[typeddict-item] } def get_inference_pool(model_context : str, model_sources : DownloadSet) -> InferencePool: global INFERENCE_POOLS with thread_lock(): while process_manager.is_checking(): sleep(0.5) app_context = detect_app_context() if INFERENCE_POOLS.get(app_context).get(model_context) is None: INFERENCE_POOLS[app_context][model_context] = create_inference_pool(model_sources, state_manager.get_item('execution_device_id'), find_execution_providers(model_context)) return INFERENCE_POOLS.get(app_context).get(model_context) def create_inference_pool(model_sources : DownloadSet, execution_device_id : str, execution_provider_keys : List[ExecutionProviderKey]) -> InferencePool: inference_pool : InferencePool = {} for model_name in model_sources.keys(): inference_pool[model_name] = create_inference_session(model_sources.get(model_name).get('path'), execution_device_id, execution_provider_keys) return inference_pool def clear_inference_pool(model_context : str) -> None: global INFERENCE_POOLS app_context = detect_app_context() INFERENCE_POOLS[app_context][model_context] = None def create_inference_session(model_path : str, execution_device_id : str, execution_provider_keys : List[ExecutionProviderKey]) -> InferenceSession: providers = create_execution_providers(execution_device_id, execution_provider_keys) return InferenceSession(model_path, providers = providers) @lru_cache(maxsize = None) def get_static_model_initializer(model_path : str) -> ModelInitializer: model = onnx.load(model_path) return onnx.numpy_helper.to_array(model.graph.initializer[-1]) def find_execution_providers(model_context : str) -> List[ExecutionProviderKey]: if has_execution_provider('coreml'): if model_context == 'facefusion.frame_colorizer': return [ 'cpu' ] return state_manager.get_item('execution_providers')