from argparse import ArgumentParser from typing import List import cv2 import numpy import facefusion.jobs.job_manager import facefusion.jobs.job_store import facefusion.processors.core as processors from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording from facefusion.common_helper import create_int_metavar from facefusion.download import conditional_download_hashes, conditional_download_sources from facefusion.face_analyser import get_many_faces, get_one_face from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5 from facefusion.face_masker import create_occlusion_mask, create_static_box_mask from facefusion.face_selector import find_similar_faces, sort_and_filter_faces from facefusion.face_store import get_reference_faces from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension from facefusion.processors import choices as processors_choices from facefusion.processors.typing import FaceEnhancerInputs from facefusion.program_helper import find_argument_group from facefusion.thread_helper import thread_semaphore from facefusion.typing import Args, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame from facefusion.vision import read_image, read_static_image, write_image MODEL_SET : ModelSet =\ { 'codeformer': { 'hashes': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/codeformer.hash', 'path': resolve_relative_path('../.assets/models/codeformer.hash') } }, 'sources': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/codeformer.onnx', 'path': resolve_relative_path('../.assets/models/codeformer.onnx') } }, 'template': 'ffhq_512', 'size': (512, 512) }, 'gfpgan_1.2': { 'hashes': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.2.hash', 'path': resolve_relative_path('../.assets/models/gfpgan_1.2.hash') } }, 'sources': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.2.onnx', 'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx') } }, 'template': 'ffhq_512', 'size': (512, 512) }, 'gfpgan_1.3': { 'hashes': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.3.hash', 'path': resolve_relative_path('../.assets/models/gfpgan_1.4.hash') } }, 'sources': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.3.onnx', 'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx') } }, 'template': 'ffhq_512', 'size': (512, 512) }, 'gfpgan_1.4': { 'hashes': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.4.hash', 'path': resolve_relative_path('../.assets/models/gfpgan_1.4.hash') } }, 'sources': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.4.onnx', 'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx') } }, 'template': 'ffhq_512', 'size': (512, 512) }, 'gpen_bfr_256': { 'hashes': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_256.hash', 'path': resolve_relative_path('../.assets/models/gpen_bfr_256.hash') } }, 'sources': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_256.onnx', 'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx') } }, 'template': 'arcface_128_v2', 'size': (256, 256) }, 'gpen_bfr_512': { 'hashes': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_512.hash', 'path': resolve_relative_path('../.assets/models/gpen_bfr_512.hash') } }, 'sources': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_512.onnx', 'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx') } }, 'template': 'ffhq_512', 'size': (512, 512) }, 'gpen_bfr_1024': { 'hashes': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_1024.hash', 'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.hash') } }, 'sources': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_1024.onnx', 'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.onnx') } }, 'template': 'ffhq_512', 'size': (1024, 1024) }, 'gpen_bfr_2048': { 'hashes': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_2048.hash', 'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.hash') } }, 'sources': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_2048.onnx', 'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.onnx') } }, 'template': 'ffhq_512', 'size': (2048, 2048) }, 'restoreformer_plus_plus': { 'hashes': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/restoreformer_plus_plus.hash', 'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.hash') } }, 'sources': { 'face_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/restoreformer_plus_plus.onnx', 'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.onnx') } }, 'template': 'ffhq_512', 'size': (512, 512) } } def get_inference_pool() -> InferencePool: model_sources = get_model_options().get('sources') return inference_manager.get_inference_pool(__name__, model_sources) def clear_inference_pool() -> None: inference_manager.clear_inference_pool(__name__) def get_model_options() -> ModelOptions: return MODEL_SET[state_manager.get_item('face_enhancer_model')] def register_args(program : ArgumentParser) -> None: group_processors = find_argument_group(program, 'processors') if group_processors: group_processors.add_argument('--face-enhancer-model', help = wording.get('help.face_enhancer_model'), default = config.get_str_value('processors.face_enhancer_model', 'gfpgan_1.4'), choices = processors_choices.face_enhancer_models) group_processors.add_argument('--face-enhancer-blend', help = wording.get('help.face_enhancer_blend'), type = int, default = config.get_int_value('processors.face_enhancer_blend', '80'), choices = processors_choices.face_enhancer_blend_range, metavar = create_int_metavar(processors_choices.face_enhancer_blend_range)) facefusion.jobs.job_store.register_step_keys([ 'face_enhancer_model', 'face_enhancer_blend' ]) def apply_args(args : Args) -> None: state_manager.init_item('face_enhancer_model', args.get('face_enhancer_model')) state_manager.init_item('face_enhancer_blend', args.get('face_enhancer_blend')) def pre_check() -> bool: download_directory_path = resolve_relative_path('../.assets/models') model_hashes = get_model_options().get('hashes') model_sources = get_model_options().get('sources') return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources) def pre_process(mode : ProcessMode) -> bool: if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')): logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__.upper()) return False if mode == 'output' and not in_directory(state_manager.get_item('output_path')): logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper()) return False if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]): logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper()) return False return True def post_process() -> None: read_static_image.cache_clear() if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]: clear_inference_pool() if state_manager.get_item('video_memory_strategy') == 'strict': content_analyser.clear_inference_pool() face_classifier.clear_inference_pool() face_detector.clear_inference_pool() face_landmarker.clear_inference_pool() face_masker.clear_inference_pool() face_recognizer.clear_inference_pool() def enhance_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: model_template = get_model_options().get('template') model_size = get_model_options().get('size') crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size) box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), (0, 0, 0, 0)) crop_masks =\ [ box_mask ] if 'occlusion' in state_manager.get_item('face_mask_types'): occlusion_mask = create_occlusion_mask(crop_vision_frame) crop_masks.append(occlusion_mask) crop_vision_frame = prepare_crop_frame(crop_vision_frame) crop_vision_frame = apply_enhance(crop_vision_frame) crop_vision_frame = normalize_crop_frame(crop_vision_frame) crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1) paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix) temp_vision_frame = blend_frame(temp_vision_frame, paste_vision_frame) return temp_vision_frame def apply_enhance(crop_vision_frame : VisionFrame) -> VisionFrame: face_enhancer = get_inference_pool().get('face_enhancer') face_enhancer_inputs = {} for face_enhancer_input in face_enhancer.get_inputs(): if face_enhancer_input.name == 'input': face_enhancer_inputs[face_enhancer_input.name] = crop_vision_frame if face_enhancer_input.name == 'weight': weight = numpy.array([ 1 ]).astype(numpy.double) face_enhancer_inputs[face_enhancer_input.name] = weight with thread_semaphore(): crop_vision_frame = face_enhancer.run(None, face_enhancer_inputs)[0][0] return crop_vision_frame def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0 crop_vision_frame = (crop_vision_frame - 0.5) / 0.5 crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) return crop_vision_frame def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: crop_vision_frame = numpy.clip(crop_vision_frame, -1, 1) crop_vision_frame = (crop_vision_frame + 1) / 2 crop_vision_frame = crop_vision_frame.transpose(1, 2, 0) crop_vision_frame = (crop_vision_frame * 255.0).round() crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1] return crop_vision_frame def blend_frame(temp_vision_frame : VisionFrame, paste_vision_frame : VisionFrame) -> VisionFrame: face_enhancer_blend = 1 - (state_manager.get_item('face_enhancer_blend') / 100) temp_vision_frame = cv2.addWeighted(temp_vision_frame, face_enhancer_blend, paste_vision_frame, 1 - face_enhancer_blend, 0) return temp_vision_frame def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: return enhance_face(target_face, temp_vision_frame) def process_frame(inputs : FaceEnhancerInputs) -> VisionFrame: reference_faces = inputs.get('reference_faces') target_vision_frame = inputs.get('target_vision_frame') many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ])) if state_manager.get_item('face_selector_mode') == 'many': if many_faces: for target_face in many_faces: target_vision_frame = enhance_face(target_face, target_vision_frame) if state_manager.get_item('face_selector_mode') == 'one': target_face = get_one_face(many_faces) if target_face: target_vision_frame = enhance_face(target_face, target_vision_frame) if state_manager.get_item('face_selector_mode') == 'reference': similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance')) if similar_faces: for similar_face in similar_faces: target_vision_frame = enhance_face(similar_face, target_vision_frame) return target_vision_frame def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None for queue_payload in process_manager.manage(queue_payloads): target_vision_path = queue_payload['frame_path'] target_vision_frame = read_image(target_vision_path) output_vision_frame = process_frame( { 'reference_faces': reference_faces, 'target_vision_frame': target_vision_frame }) write_image(target_vision_path, output_vision_frame) update_progress(1) def process_image(source_path : str, target_path : str, output_path : str) -> None: reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None target_vision_frame = read_static_image(target_path) output_vision_frame = process_frame( { 'reference_faces': reference_faces, 'target_vision_frame': target_vision_frame }) write_image(output_path, output_vision_frame) def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: processors.multi_process_frames(None, temp_frame_paths, process_frames)