from argparse import ArgumentParser from typing import List import cv2 import numpy import facefusion.jobs.job_manager import facefusion.jobs.job_store import facefusion.processors.core as processors from facefusion import config, content_analyser, inference_manager, logger, process_manager, state_manager, wording from facefusion.common_helper import create_int_metavar from facefusion.download import conditional_download_hashes, conditional_download_sources from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension from facefusion.processors import choices as processors_choices from facefusion.processors.typing import FrameEnhancerInputs from facefusion.program_helper import find_argument_group from facefusion.thread_helper import conditional_thread_semaphore from facefusion.typing import Args, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame from facefusion.vision import create_tile_frames, merge_tile_frames, read_image, read_static_image, write_image MODEL_SET : ModelSet =\ { 'clear_reality_x4': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/clear_reality_x4.hash', 'path': resolve_relative_path('../.assets/models/clear_reality_x4.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/clear_reality_x4.onnx', 'path': resolve_relative_path('../.assets/models/clear_reality_x4.onnx') } }, 'size': (128, 8, 4), 'scale': 4 }, 'lsdir_x4': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/lsdir_x4.hash', 'path': resolve_relative_path('../.assets/models/lsdir_x4.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/lsdir_x4.onnx', 'path': resolve_relative_path('../.assets/models/lsdir_x4.onnx') } }, 'size': (128, 8, 4), 'scale': 4 }, 'nomos8k_sc_x4': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/nomos8k_sc_x4.hash', 'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/nomos8k_sc_x4.onnx', 'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.onnx') } }, 'size': (128, 8, 4), 'scale': 4 }, 'real_esrgan_x2': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2.hash', 'path': resolve_relative_path('../.assets/models/real_esrgan_x2.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2.onnx', 'path': resolve_relative_path('../.assets/models/real_esrgan_x2.onnx') } }, 'size': (256, 16, 8), 'scale': 2 }, 'real_esrgan_x2_fp16': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2_fp16.hash', 'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2_fp16.onnx', 'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.onnx') } }, 'size': (256, 16, 8), 'scale': 2 }, 'real_esrgan_x4': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4.hash', 'path': resolve_relative_path('../.assets/models/real_esrgan_x4.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4.onnx', 'path': resolve_relative_path('../.assets/models/real_esrgan_x4.onnx') } }, 'size': (256, 16, 8), 'scale': 4 }, 'real_esrgan_x4_fp16': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4_fp16.hash', 'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4_fp16.onnx', 'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.onnx') } }, 'size': (256, 16, 8), 'scale': 4 }, 'real_esrgan_x8': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8.hash', 'path': resolve_relative_path('../.assets/models/real_esrgan_x8.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8.onnx', 'path': resolve_relative_path('../.assets/models/real_esrgan_x8.onnx') } }, 'size': (256, 16, 8), 'scale': 8 }, 'real_esrgan_x8_fp16': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8_fp16.hash', 'path': resolve_relative_path('../.assets/models/real_esrgan_x8_fp16.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8_fp16.onnx', 'path': resolve_relative_path('../.assets/models/real_esrgan_x8_fp16.onnx') } }, 'size': (256, 16, 8), 'scale': 8 }, 'real_hatgan_x4': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_hatgan_x4.hash', 'path': resolve_relative_path('../.assets/models/real_hatgan_x4.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_hatgan_x4.onnx', 'path': resolve_relative_path('../.assets/models/real_hatgan_x4.onnx') } }, 'size': (256, 16, 8), 'scale': 4 }, 'span_kendata_x4': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/span_kendata_x4.hash', 'path': resolve_relative_path('../.assets/models/span_kendata_x4.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/span_kendata_x4.onnx', 'path': resolve_relative_path('../.assets/models/span_kendata_x4.onnx') } }, 'size': (128, 8, 4), 'scale': 4 }, 'ultra_sharp_x4': { 'hashes': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ultra_sharp_x4.hash', 'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.hash') } }, 'sources': { 'frame_enhancer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ultra_sharp_x4.onnx', 'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.onnx') } }, 'size': (128, 8, 4), 'scale': 4 } } def get_inference_pool() -> InferencePool: model_sources = get_model_options().get('sources') return inference_manager.get_inference_pool(__name__, model_sources) def clear_inference_pool() -> None: inference_manager.clear_inference_pool(__name__) def get_model_options() -> ModelOptions: return MODEL_SET[state_manager.get_item('frame_enhancer_model')] def register_args(program : ArgumentParser) -> None: group_processors = find_argument_group(program, 'processors') if group_processors: group_processors.add_argument('--frame-enhancer-model', help = wording.get('help.frame_enhancer_model'), default = config.get_str_value('processors.frame_enhancer_model', 'span_kendata_x4'), choices = processors_choices.frame_enhancer_models) group_processors.add_argument('--frame-enhancer-blend', help = wording.get('help.frame_enhancer_blend'), type = int, default = config.get_int_value('processors.frame_enhancer_blend', '80'), choices = processors_choices.frame_enhancer_blend_range, metavar = create_int_metavar(processors_choices.frame_enhancer_blend_range)) facefusion.jobs.job_store.register_step_keys([ 'frame_enhancer_model', 'frame_enhancer_blend' ]) def apply_args(args : Args) -> None: state_manager.init_item('frame_enhancer_model', args.get('frame_enhancer_model')) state_manager.init_item('frame_enhancer_blend', args.get('frame_enhancer_blend')) def pre_check() -> bool: download_directory_path = resolve_relative_path('../.assets/models') model_hashes = get_model_options().get('hashes') model_sources = get_model_options().get('sources') return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources) def pre_process(mode : ProcessMode) -> bool: if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')): logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__.upper()) return False if mode == 'output' and not in_directory(state_manager.get_item('output_path')): logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper()) return False if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]): logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper()) return False return True def post_process() -> None: read_static_image.cache_clear() if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]: clear_inference_pool() if state_manager.get_item('video_memory_strategy') == 'strict': content_analyser.clear_inference_pool() def enhance_frame(temp_vision_frame : VisionFrame) -> VisionFrame: frame_enhancer = get_inference_pool().get('frame_enhancer') model_size = get_model_options().get('size') model_scale = get_model_options().get('scale') temp_height, temp_width = temp_vision_frame.shape[:2] tile_vision_frames, pad_width, pad_height = create_tile_frames(temp_vision_frame, model_size) for index, tile_vision_frame in enumerate(tile_vision_frames): with conditional_thread_semaphore(): tile_vision_frame = frame_enhancer.run(None, { 'input': prepare_tile_frame(tile_vision_frame) })[0] tile_vision_frames[index] = normalize_tile_frame(tile_vision_frame) merge_vision_frame = merge_tile_frames(tile_vision_frames, temp_width * model_scale, temp_height * model_scale, pad_width * model_scale, pad_height * model_scale, (model_size[0] * model_scale, model_size[1] * model_scale, model_size[2] * model_scale)) temp_vision_frame = blend_frame(temp_vision_frame, merge_vision_frame) return temp_vision_frame def prepare_tile_frame(vision_tile_frame : VisionFrame) -> VisionFrame: vision_tile_frame = numpy.expand_dims(vision_tile_frame[:, :, ::-1], axis = 0) vision_tile_frame = vision_tile_frame.transpose(0, 3, 1, 2) vision_tile_frame = vision_tile_frame.astype(numpy.float32) / 255 return vision_tile_frame def normalize_tile_frame(vision_tile_frame : VisionFrame) -> VisionFrame: vision_tile_frame = vision_tile_frame.transpose(0, 2, 3, 1).squeeze(0) * 255 vision_tile_frame = vision_tile_frame.clip(0, 255).astype(numpy.uint8)[:, :, ::-1] return vision_tile_frame def blend_frame(temp_vision_frame : VisionFrame, merge_vision_frame : VisionFrame) -> VisionFrame: frame_enhancer_blend = 1 - (state_manager.get_item('frame_enhancer_blend') / 100) temp_vision_frame = cv2.resize(temp_vision_frame, (merge_vision_frame.shape[1], merge_vision_frame.shape[0])) temp_vision_frame = cv2.addWeighted(temp_vision_frame, frame_enhancer_blend, merge_vision_frame, 1 - frame_enhancer_blend, 0) return temp_vision_frame def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: pass def process_frame(inputs : FrameEnhancerInputs) -> VisionFrame: target_vision_frame = inputs.get('target_vision_frame') return enhance_frame(target_vision_frame) def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: for queue_payload in process_manager.manage(queue_payloads): target_vision_path = queue_payload['frame_path'] target_vision_frame = read_image(target_vision_path) output_vision_frame = process_frame( { 'target_vision_frame': target_vision_frame }) write_image(target_vision_path, output_vision_frame) update_progress(1) def process_image(source_paths : List[str], target_path : str, output_path : str) -> None: target_vision_frame = read_static_image(target_path) output_vision_frame = process_frame( { 'target_vision_frame': target_vision_frame }) write_image(output_path, output_vision_frame) def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: processors.multi_process_frames(None, temp_frame_paths, process_frames)