doevent commited on
Commit
1675c65
·
1 Parent(s): 7f08ee3

Upload realesrgan.py

Browse files
Files changed (1) hide show
  1. realesrgan.py +56 -0
realesrgan.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+ from PIL import Image
4
+ import numpy as np
5
+ import cv2
6
+
7
+ from rrdbnet_arch import RRDBNet
8
+ from utils_sr import *
9
+
10
+
11
+ class RealESRGAN:
12
+ def __init__(self, device, scale=4):
13
+ self.device = device
14
+ self.scale = scale
15
+ self.model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=scale)
16
+
17
+ def load_weights(self, model_path):
18
+ loadnet = torch.load(model_path)
19
+ if 'params' in loadnet:
20
+ self.model.load_state_dict(loadnet['params'], strict=True)
21
+ elif 'params_ema' in loadnet:
22
+ self.model.load_state_dict(loadnet['params_ema'], strict=True)
23
+ else:
24
+ self.model.load_state_dict(loadnet, strict=True)
25
+ self.model.eval()
26
+ self.model.to(self.device)
27
+
28
+ @torch.cuda.amp.autocast()
29
+ def predict(self, lr_image, batch_size=4, patches_size=192,
30
+ padding=24, pad_size=15):
31
+ scale = self.scale
32
+ device = self.device
33
+ lr_image = np.array(lr_image)
34
+ lr_image = pad_reflect(lr_image, pad_size)
35
+
36
+ patches, p_shape = split_image_into_overlapping_patches(lr_image, patch_size=patches_size,
37
+ padding_size=padding)
38
+ img = torch.FloatTensor(patches/255).permute((0,3,1,2)).to(device).detach()
39
+
40
+ with torch.no_grad():
41
+ res = self.model(img[0:batch_size])
42
+ for i in range(batch_size, img.shape[0], batch_size):
43
+ res = torch.cat((res, self.model(img[i:i+batch_size])), 0)
44
+
45
+ sr_image = res.permute((0,2,3,1)).clamp_(0, 1).cpu()
46
+ np_sr_image = sr_image.numpy()
47
+
48
+ padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,)
49
+ scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,)
50
+ np_sr_image = stich_together(np_sr_image, padded_image_shape=padded_size_scaled,
51
+ target_shape=scaled_image_shape, padding_size=padding * scale)
52
+ sr_img = (np_sr_image*255).astype(np.uint8)
53
+ sr_img = unpad_image(sr_img, pad_size*scale)
54
+ sr_img = Image.fromarray(sr_img)
55
+
56
+ return sr_img