Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,6 @@ import torch
|
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
import gradio as gr
|
5 |
-
import gc
|
6 |
-
import spaces
|
7 |
|
8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
model2 = RealESRGAN(device, scale=2)
|
@@ -13,12 +11,7 @@ model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
|
|
13 |
model8 = RealESRGAN(device, scale=8)
|
14 |
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
|
15 |
|
16 |
-
if torch.cuda.is_available():
|
17 |
-
torch.cuda.empty_cache()
|
18 |
-
gc.collect()
|
19 |
|
20 |
-
|
21 |
-
@spaces.GPU
|
22 |
def inference(image, size):
|
23 |
if image is None:
|
24 |
raise gr.Error("Image not uploaded")
|
@@ -26,6 +19,9 @@ def inference(image, size):
|
|
26 |
width, height = image.size
|
27 |
if width >= 5000 or height >= 5000:
|
28 |
raise gr.Error("The image is too large.")
|
|
|
|
|
|
|
29 |
|
30 |
if size == '2x':
|
31 |
result = model2.predict(image.convert('RGB'))
|
|
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
model2 = RealESRGAN(device, scale=2)
|
|
|
11 |
model8 = RealESRGAN(device, scale=8)
|
12 |
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
|
13 |
|
|
|
|
|
|
|
14 |
|
|
|
|
|
15 |
def inference(image, size):
|
16 |
if image is None:
|
17 |
raise gr.Error("Image not uploaded")
|
|
|
19 |
width, height = image.size
|
20 |
if width >= 5000 or height >= 5000:
|
21 |
raise gr.Error("The image is too large.")
|
22 |
+
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
torch.cuda.empty_cache()
|
25 |
|
26 |
if size == '2x':
|
27 |
result = model2.predict(image.convert('RGB'))
|