import torch from PIL import Image from RealESRGAN import RealESRGAN import gradio as gr device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model2 = RealESRGAN(device, scale=2) model2.load_weights('weights/RealESRGAN_x2.pth', download=True) model4 = RealESRGAN(device, scale=4) model4.load_weights('weights/RealESRGAN_x4.pth', download=True) model8 = RealESRGAN(device, scale=8) model8.load_weights('weights/RealESRGAN_x8.pth', download=True) def inference(image, size): global model2 global model4 global model8 if image is None: raise gr.Error("Image not uploaded") if torch.cuda.is_available(): torch.cuda.empty_cache() if size == '2x': try: result = model2.predict(image.convert('RGB')) except torch.cuda.OutOfMemoryError as e: print(e) model2 = RealESRGAN(device, scale=2) model2.load_weights('weights/RealESRGAN_x2.pth', download=False) result = model2.predict(image.convert('RGB')) elif size == '4x': try: result = model4.predict(image.convert('RGB')) except torch.cuda.OutOfMemoryError as e: print(e) model4 = RealESRGAN(device, scale=4) model4.load_weights('weights/RealESRGAN_x4.pth', download=False) result = model2.predict(image.convert('RGB')) else: try: width, height = image.size if width >= 5000 or height >= 5000: raise gr.Error("The image is too large.") result = model8.predict(image.convert('RGB')) except torch.cuda.OutOfMemoryError as e: print(e) model8 = RealESRGAN(device, scale=8) model8.load_weights('weights/RealESRGAN_x8.pth', download=False) result = model2.predict(image.convert('RGB')) print(f"Image size ({device}): {size} ... OK") return result title = "Face Real ESRGAN UpScale: 2x 4x 8x" description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.
Telegram BOT: https://t.me/restoration_photo_bot" article = "
Twitter Max Skobeev | Model card
" gr.Interface(inference, [gr.Image(type="pil"), gr.Radio(["2x", "4x", "8x"], type="value", value="2x", label="Resolution model")], gr.Image(type="pil", label="Output", format="png"), title=title, description=description, article=article, examples=[["groot.jpeg", "2x"]], allow_flagging="never", cache_examples="lazy", delete_cache=(4000, 4000), ).queue(api_open=True).launch(show_error=True, show_api=True)