Spaces:
Runtime error
Runtime error
File size: 14,466 Bytes
b34d1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from collections import defaultdict
from typing import Dict, List, Optional, Sequence, Union
import numpy as np
import torch
from mmdet.evaluation.metrics.coco_panoptic_metric import print_panoptic_table, parse_pq_results
from mmengine import print_log, mkdir_or_exist
from mmengine.dist import barrier, broadcast_object_list, is_main_process
from mmdet.registry import METRICS
from mmdet.evaluation.metrics.base_video_metric import BaseVideoMetric, collect_tracking_results
from panopticapi.evaluation import PQStat
from seg.models.utils import mmpan2hbpan, INSTANCE_OFFSET_HB, mmgt2hbpan
from seg.models.utils import cal_pq, NO_OBJ_ID, IoUObj
def parse_pan_map_hb(pan_map: np.ndarray, data_sample: dict, num_classes: int) -> dict:
result = dict()
result['video_id'] = data_sample['video_id']
result['frame_id'] = data_sample['frame_id']
# For video evaluation, each map may include several loads,
# it is not efficient for saving an extra png map, especially
# for machines not with high performance ssd.
pan_labels = np.unique(pan_map)
segments_info = []
for pan_label in pan_labels:
sem_label = pan_label // INSTANCE_OFFSET_HB
if sem_label >= num_classes:
continue
mask = (pan_map == pan_label).astype(np.uint8)
area = mask.sum()
# _mask = maskUtils.encode(np.asfortranarray(mask))
# _mask['counts'] = _mask['counts'].decode()
segments_info.append({
'id': int(pan_label),
'category_id': sem_label,
'area': int(area),
'mask': mask
})
result['segments_info'] = segments_info
return result
def parse_data_sample_gt(data_sample: dict, num_things: int, num_stuff: int) -> dict:
num_classes = num_things + num_stuff
result = dict()
result['video_id'] = data_sample['video_id']
result['frame_id'] = data_sample['frame_id']
# For video evaluation, each map may include several loads,
# it is not efficient for saving an extra png map, especially
# for machines not with high performance ssd.
gt_instances = data_sample['gt_instances']
segments_info = []
for thing_id in range(len(gt_instances['labels'])):
mask = gt_instances['masks'].masks[thing_id].astype(np.uint8)
area = mask.sum()
pan_id = gt_instances['instances_ids'][thing_id]
cat = int(gt_instances['labels'][thing_id])
if cat >= num_things:
raise ValueError(f"not reasonable value {cat}")
# _mask = maskUtils.encode(np.asfortranarray(mask))
# _mask['counts'] = _mask['counts'].decode()
segments_info.append({
'id': int(pan_id),
'category_id': cat,
'area': int(area),
'mask': mask
})
gt_sem_seg = data_sample['gt_sem_seg']['sem_seg'][0].cpu().numpy()
for stuff_id in np.unique(gt_sem_seg):
if stuff_id < num_things:
continue
if stuff_id >= num_classes:
assert stuff_id == NO_OBJ_ID // INSTANCE_OFFSET_HB
_mask = (gt_sem_seg == stuff_id).astype(np.uint8)
area = _mask.sum()
cat = int(stuff_id)
pan_id = cat * INSTANCE_OFFSET_HB
segments_info.append({
'id': int(pan_id),
'category_id': cat,
'area': int(area),
'mask': _mask
})
if segments_info[-1]['id'] != NO_OBJ_ID:
segments_info.append({
'id': int(NO_OBJ_ID),
'category_id': NO_OBJ_ID // INSTANCE_OFFSET_HB,
'area': 0,
'mask': np.zeros_like(gt_sem_seg, dtype=np.uint8)
})
result['segments_info'] = segments_info
return result
@METRICS.register_module()
class VIPSegMetric(BaseVideoMetric):
"""mAP evaluation metrics for the VIS task.
Args:
metric (str | list[str]): Metrics to be evaluated.
Default value is `youtube_vis_ap`..
outfile_prefix (str | None): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Defaults to None.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonyms metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Default: None
format_only (bool): If True, only formatting the results to the
official format and not performing evaluation. Defaults to False.
"""
default_prefix: Optional[str] = 'vip_seg'
def __init__(self,
metric: Union[str, List[str]] = 'VPQ@1',
outfile_prefix: Optional[str] = None,
collect_device: str = 'cpu',
prefix: Optional[str] = None,
format_only: bool = False) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
# vis evaluation metrics
self.metrics = metric if isinstance(metric, list) else [metric]
self.format_only = format_only
allowed_metrics = ['VPQ']
for metric in self.metrics:
if metric not in allowed_metrics and metric.split('@')[0] not in allowed_metrics:
raise KeyError(
f"metric should be 'youtube_vis_ap', but got {metric}.")
self.outfile_prefix = outfile_prefix
self.per_video_res = []
self.categories = {}
self._vis_meta_info = defaultdict(list) # record video and image infos
def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
for track_data_sample in data_samples:
video_data_samples = track_data_sample['video_data_samples']
ori_video_len = video_data_samples[0].ori_video_length
if ori_video_len == len(video_data_samples):
# video process
self.process_video(video_data_samples)
else:
# image process
raise NotImplementedError
def process_video(self, data_samples):
video_length = len(data_samples)
num_things = len(self.dataset_meta['thing_classes'])
num_stuff = len(self.dataset_meta['stuff_classes'])
num_classes = num_things + num_stuff
for frame_id in range(video_length):
img_data_sample = data_samples[frame_id].to_dict()
# 0 is for dummy dimension in fusion head, not batch.
pred = mmpan2hbpan(img_data_sample['pred_track_panoptic_seg']['sem_seg'][0], num_classes=num_classes)
if self.format_only:
vid_id = data_samples[frame_id].video_id
gt = mmgt2hbpan(data_samples[frame_id])
mkdir_or_exist('vipseg_output/gt/')
mkdir_or_exist('vipseg_output/pred/')
torch.save(gt.to(device='cpu'),
'vipseg_output/gt/{:06d}_{:06d}.pth'.format(vid_id, frame_id))
torch.save(torch.tensor(pred, device='cpu'),
'vipseg_output/pred/{:06d}_{:06d}.pth'.format(vid_id, frame_id))
continue
pred_json = parse_pan_map_hb(pred, img_data_sample, num_classes=num_classes)
gt_json = parse_data_sample_gt(img_data_sample, num_things=num_things, num_stuff=num_stuff)
self.per_video_res.append((pred_json, gt_json))
if self.format_only:
return
video_results = []
for pred, gt in self.per_video_res:
intersection_info = dict()
gt_no_obj_info = gt['segments_info'][-1]
for pred_seg_info in pred['segments_info']:
intersection = int((gt_no_obj_info['mask'] * pred_seg_info['mask']).sum())
union = pred_seg_info['area']
intersection_info[gt_no_obj_info['id'], pred_seg_info['id']] = IoUObj(
intersection=intersection,
union=union
)
for pred_seg_info in pred['segments_info']:
for gt_seg_info in gt['segments_info'][:-1]:
intersection = int((gt_seg_info['mask'] * pred_seg_info['mask']).sum())
union = gt_seg_info['area'] + pred_seg_info['area'] - \
intersection - intersection_info[NO_OBJ_ID, pred_seg_info['id']].intersection
intersection_info[gt_seg_info['id'], pred_seg_info['id']] = IoUObj(
intersection=intersection,
union=union
)
video_results.append(intersection_info)
self.per_video_res.clear()
self.results.append(video_results)
def compute_metrics(self, results: List) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (List): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
# split gt and prediction list
eval_results = {}
if self.format_only:
return eval_results
for metric in self.metrics:
seq_len = int(metric.split('@')[-1])
pq_stat = PQStat()
cnt = 0
for vid_idx, video_instances in enumerate(results):
for frame_x in range(len(video_instances)):
if frame_x + seq_len > len(video_instances):
break
global_intersection_info = defaultdict(IoUObj)
for frame_offset in range(seq_len):
frame_info = video_instances[frame_x + frame_offset]
for gt_id, pred_id in frame_info:
global_intersection_info[gt_id, pred_id] += frame_info[gt_id, pred_id]
pq_stat += cal_pq(global_intersection_info, classes=self.dataset_meta['classes'])
# global_intersection_info = defaultdict(IoUObj)
# for frame_idx, frame_info in enumerate(video_instances):
# for gt_id, pred_id in frame_info:
# global_intersection_info[gt_id, pred_id] += frame_info[gt_id, pred_id]
# if frame_idx - seq_len >= 0:
# out_frame_info = video_instances[frame_idx - seq_len]
# for gt_id, pred_id in out_frame_info:
# global_intersection_info[gt_id, pred_id] -= out_frame_info[gt_id, pred_id]
# assert global_intersection_info[gt_id, pred_id].is_legal()
# if frame_idx - seq_len >= -1:
# pq_stat += cal_pq(global_intersection_info, classes=self.dataset_meta['classes'])
# cnt += 1
print_log("Total calculated clips: " + str(cnt), logger='current')
sub_metrics = [('All', None), ('Things', True), ('Stuff', False)]
pq_results = {}
for name, isthing in sub_metrics:
pq_results[name], classwise_results = pq_stat.pq_average(
self.categories, isthing=isthing)
if name == 'All':
pq_results['classwise'] = classwise_results
# classwise_results = {
# k: v
# for k, v in zip(self.dataset_meta['classes'],
# pq_results['classwise'].values())
# }
print_panoptic_table(pq_results, None, logger='current')
metric_results = parse_pq_results(pq_results)
for key in metric_results:
eval_results[metric + f'_{key}'] = metric_results[key]
return eval_results
def evaluate(self, size: int) -> dict:
"""Evaluate the model performance of the whole dataset after processing
all batches.
Args:
size (int): Length of the entire validation dataset.
Returns:
dict: Evaluation metrics dict on the val dataset. The keys are the
names of the metrics, and the values are corresponding results.
"""
# wait for all processes to complete prediction.
barrier()
cls_idx = 0
for thing_cls in self.dataset_meta['thing_classes']:
self.categories[cls_idx] = {'class': thing_cls, 'isthing': 1}
cls_idx += 1
for stuff_cls in self.dataset_meta['stuff_classes']:
self.categories[cls_idx] = {'class': stuff_cls, 'isthing': 0}
cls_idx += 1
assert cls_idx == len(self.dataset_meta['classes'])
if len(self.results) == 0:
warnings.warn(
f'{self.__class__.__name__} got empty `self.results`. Please '
'ensure that the processed results are properly added into '
'`self.results` in `process` method.')
results = collect_tracking_results(self.results, self.collect_device)
# # gather seq_info
# gathered_seq_info = all_gather_object(self._vis_meta_info['videos'])
# all_seq_info = []
# for _seq_info in gathered_seq_info:
# all_seq_info.extend(_seq_info)
# # update self._vis_meta_info
# self._vis_meta_info = dict(videos=all_seq_info)
if is_main_process():
print_log(
f"There are totally {len(results)} videos to be evaluated.",
logger='current'
)
_metrics = self.compute_metrics(results) # type: ignore
# Add prefix to metric names
if self.prefix:
_metrics = {
'/'.join((self.prefix, k)): v
for k, v in _metrics.items()
}
metrics = [_metrics]
else:
metrics = [None] # type: ignore
broadcast_object_list(metrics)
# reset the results list
self.results.clear()
# reset the vis_meta_info
self._vis_meta_info.clear()
return metrics[0]
|