File size: 10,033 Bytes
590f41d 4ff8b3b ae94a43 5f47c66 590f41d 927ba9d 5f47c66 927ba9d 88b33c2 ae94a43 a7d5a37 5f47c66 d7b4867 ae94a43 4ff8b3b ae94a43 4ff8b3b 5f47c66 ae94a43 5f47c66 4ff8b3b 590f41d bbf3398 afed00c ae94a43 4ff8b3b ae94a43 c37029b ae94a43 c37029b 5f47c66 ae94a43 5f47c66 ae94a43 5f47c66 ae94a43 5f47c66 4ff8b3b ae94a43 5f47c66 28a7057 5f47c66 28a7057 5f47c66 ae94a43 c37029b ae94a43 4ff8b3b ae94a43 5f47c66 2ec8ef6 ae94a43 c37029b ae94a43 5f47c66 ae94a43 5f47c66 ae94a43 4ff8b3b 5f47c66 4ff8b3b db7515e 4ff8b3b db7515e 4ff8b3b 5f47c66 4ff8b3b 5f47c66 4ff8b3b 5f47c66 4ff8b3b ae94a43 c37029b 590f41d f96230b 5f47c66 4ff8b3b 5f47c66 4ff8b3b 590f41d 4ff8b3b db7515e 4ff8b3b 590f41d 4ff8b3b ae94a43 d290679 ae94a43 d290679 ae94a43 d290679 ae94a43 d290679 db7515e d290679 db7515e d290679 c37029b d290679 ae94a43 d290679 ae94a43 590f41d ae94a43 2ec8ef6 ae94a43 d7b4867 4ff8b3b 88b33c2 4ff8b3b 590f41d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import time
from tempfile import NamedTemporaryFile, _TemporaryFileWrapper
from typing import Any, Optional, Union
import streamlit as st
import torchaudio
from conette import CoNeTTEModel, conette, __version__
from conette.utils.collections import dict_list_to_list_dict
from st_audiorec import st_audiorec
from streamlit.runtime.uploaded_file_manager import UploadedFile
from torch import Tensor
ALLOW_REP_MODES = ("stopwords", "all", "none")
DEFAULT_TASK = "audiocaps"
MAX_BEAM_SIZE = 20
MAX_PRED_SIZE = 30
MAX_BATCH_SIZE = 16
RECORD_AUDIO_FNAME = "microphone_conette_record.wav"
DEFAULT_THRESHOLD = 0.3
THRESHOLD_PRECISION = 100
MIN_AUDIO_DURATION_SEC = 0.3
MAX_AUDIO_DURATION_SEC = 60
HASH_PREFIX = "hash_"
TMP_FILE_PREFIX = "audio_tmp_file_"
SECOND_BEFORE_CLEAR_CACHE = 10 * 60
@st.cache_resource
def load_conette(*args, **kwargs) -> CoNeTTEModel:
return conette(*args, **kwargs)
def format_candidate(candidate: str) -> str:
if len(candidate) == 0:
return ""
else:
return f"{candidate[0].title()}{candidate[1:]}."
def format_tags(tags: Optional[list[str]]) -> str:
if tags is None or len(tags) == 0:
return "None."
else:
return ", ".join(tags)
def get_result_hash(audio_fname: str, generate_kwds: dict[str, Any]) -> str:
return f"{HASH_PREFIX}{audio_fname}-{generate_kwds}"
def get_results(
model: CoNeTTEModel,
audio_files: dict[str, bytes],
generate_kwds: dict[str, Any],
) -> dict[str, Union[dict[str, Any], str]]:
# Get audio to be processed
audio_to_predict: dict[str, tuple[str, bytes]] = {}
for audio_fname, audio in audio_files.items():
result_hash = get_result_hash(audio_fname, generate_kwds)
if result_hash not in st.session_state or audio_fname == RECORD_AUDIO_FNAME:
audio_to_predict[result_hash] = (audio_fname, audio)
# Save audio to be processed
tmp_files: dict[str, _TemporaryFileWrapper] = {}
for result_hash, (audio_fname, audio) in audio_to_predict.items():
tmp_file = NamedTemporaryFile(delete=False, prefix=TMP_FILE_PREFIX)
tmp_file.write(audio)
tmp_file.close()
metadata = torchaudio.info(tmp_file.name) # type: ignore
duration = metadata.num_frames / metadata.sample_rate
if MIN_AUDIO_DURATION_SEC > duration:
error_msg = f"""
##### Result for "{audio_fname}"
Audio file is too short. (found {duration:.2f}s but the model expect audio in range [{MIN_AUDIO_DURATION_SEC}, {MAX_AUDIO_DURATION_SEC}])
"""
st.session_state[result_hash] = error_msg
elif duration > MAX_AUDIO_DURATION_SEC:
error_msg = f"""
##### Result for "{audio_fname}"
Audio file is too long. (found {duration:.2f}s but the model expect audio in range [{MIN_AUDIO_DURATION_SEC}, {MAX_AUDIO_DURATION_SEC}])
"""
st.session_state[result_hash] = error_msg
else:
tmp_files[result_hash] = tmp_file
# Generate predictions and store them in session state
for start in range(0, len(tmp_files), MAX_BATCH_SIZE):
end = min(start + MAX_BATCH_SIZE, len(tmp_files))
result_hashes_j = list(tmp_files.keys())[start:end]
tmp_files_j = list(tmp_files.values())[start:end]
tmp_paths_j = [tmp_file.name for tmp_file in tmp_files_j]
outputs_j = model(
tmp_paths_j,
**generate_kwds,
)
outputs_lst = dict_list_to_list_dict(outputs_j) # type: ignore
for result_hash, output_i in zip(result_hashes_j, outputs_lst):
st.session_state[result_hash] = output_i
# Get outputs
outputs = {}
for audio_fname in audio_files.keys():
result_hash = get_result_hash(audio_fname, generate_kwds)
output_i = st.session_state[result_hash]
outputs[audio_fname] = output_i
for tmp_file in tmp_files.values():
os.remove(tmp_file.name)
return outputs
def show_results(outputs: dict[str, Union[dict[str, Any], str]]) -> None:
keys = list(outputs.keys())[::-1]
outputs = {key: outputs[key] for key in keys}
st.divider()
for audio_fname, output in outputs.items():
if isinstance(output, str):
st.error(output)
st.divider()
continue
cand: str = output["cands"]
lprobs: Tensor = output["lprobs"]
tags_lst = output.get("tags")
mult_cands: list[str] = output["mult_cands"]
mult_lprobs: Tensor = output["mult_lprobs"]
cand = format_candidate(cand)
prob = lprobs.exp().tolist()
tags = format_tags(tags_lst)
mult_cands = [format_candidate(cand_i) for cand_i in mult_cands]
mult_probs = mult_lprobs.exp()
indexes = mult_probs.argsort(descending=True)[1:]
mult_probs = mult_probs[indexes].tolist()
mult_cands = [mult_cands[idx] for idx in indexes]
if audio_fname == RECORD_AUDIO_FNAME:
header = "##### Result for microphone input:"
else:
header = f'##### Result for "{audio_fname}"'
lines = [
header,
f'<center><p class="space"><p class="big-font">"{cand}"</p></p></center>',
]
st.markdown(
"""
<style>
.big-font {
font-size:22px !important;
background-color: rgba(0, 255, 0, 0.1);
padding: 10px;
}
</style>
""",
unsafe_allow_html=True,
)
content = "<br>".join(lines)
st.markdown(content, unsafe_allow_html=True)
lines = [
f"- **Probability**: {prob*100:.1f}%",
]
if len(mult_cands) > 0:
msg = f"- **Other descriptions:**"
lines.append(msg)
for cand_i, prob_i in zip(mult_cands, mult_probs):
msg = f' - "{cand_i}" ({prob_i*100:.1f}%)'
lines.append(msg)
msg = f"- **Tags:** {tags}"
lines.append(msg)
content = "\n".join(lines)
st.markdown(content, unsafe_allow_html=False)
st.divider()
def main() -> None:
model = load_conette(model_kwds=dict(device="cpu"))
st.header("Describe audio content with CoNeTTE")
st.markdown(
"This interface allows you to generate a short description of the sound events of any recording using an Audio Captioning system. You can try it from your microphone or upload a file below."
)
st.markdown(
"Use '**Start Recording**' and '**Stop**' to record an audio from your microphone."
)
record_data = st_audiorec()
with st.expander("Or upload audio files here:"):
audio_files: Optional[list[UploadedFile]] = st.file_uploader(
f"Audio files are automatically resampled to 32 kHz.\nTheir duration must be in range [{MIN_AUDIO_DURATION_SEC}, {MAX_AUDIO_DURATION_SEC}] seconds.",
type=["wav", "flac", "mp3", "ogg", "avi"],
accept_multiple_files=True,
help="Supports wav, flac, mp3, ogg and avi files.",
)
with st.expander("Model options"):
if DEFAULT_TASK in model.tasks:
default_task_idx = list(model.tasks).index(DEFAULT_TASK)
else:
default_task_idx = 0
task = st.selectbox("Task embedding input", model.tasks, default_task_idx)
allow_rep_mode = st.selectbox("Allow repetition of words", ALLOW_REP_MODES, 0)
beam_size: int = st.select_slider( # type: ignore
"Beam size",
list(range(1, MAX_BEAM_SIZE + 1)),
model.config.beam_size,
)
min_pred_size, max_pred_size = st.slider(
"Minimal and maximal number of words",
1,
MAX_PRED_SIZE,
(model.config.min_pred_size, model.config.max_pred_size),
)
threshold = st.select_slider(
"Tags threshold",
[(i / THRESHOLD_PRECISION) for i in range(THRESHOLD_PRECISION + 1)],
DEFAULT_THRESHOLD,
)
if allow_rep_mode == "all":
forbid_rep_mode = "none"
elif allow_rep_mode == "none":
forbid_rep_mode = "all"
elif allow_rep_mode == "stopwords":
forbid_rep_mode = "content_words"
else:
msg = (
f"Unknown option {allow_rep_mode=}. (expected one of {ALLOW_REP_MODES})"
)
raise ValueError(msg)
del allow_rep_mode
generate_kwds: dict[str, Any] = dict(
task=task,
beam_size=beam_size,
min_pred_size=min_pred_size,
max_pred_size=max_pred_size,
forbid_rep_mode=forbid_rep_mode,
threshold=threshold,
)
audios: dict[str, bytes] = {}
if audio_files is not None:
audios |= {audio.name: audio.getvalue() for audio in audio_files}
if record_data is not None:
audios |= {RECORD_AUDIO_FNAME: record_data}
if len(audios) > 0:
with st.spinner("Generating descriptions..."):
outputs = get_results(model, audios, generate_kwds)
st.header("Results:")
show_results(outputs)
current = time.perf_counter()
last_generation = st.session_state.get("last_generation", current)
if current > last_generation + SECOND_BEFORE_CLEAR_CACHE:
print(f"Removing result cache...")
for key in st.session_state.keys():
if isinstance(key, str) and key.startswith(HASH_PREFIX):
del st.session_state[key]
st.session_state["last_generation"] = current
content = f"""CoNeTTE version {__version__}. <a href="https://github.com/Labbeti/conette-audio-captioning/">Source code on GitHub</a>. <a href="https://ieeexplore.ieee.org/document/10603439">Academic Paper</a>."""
st.divider()
st.markdown(content, unsafe_allow_html=True)
if __name__ == "__main__":
main()
|