File size: 8,666 Bytes
6307f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import logging
import torch
import cv2
import numpy as np

from typing import List, Dict, Optional
from label_studio_ml.utils import get_image_local_path, InMemoryLRUDictCache

logger = logging.getLogger(__name__)

VITH_CHECKPOINT = os.environ.get("VITH_CHECKPOINT")
ONNX_CHECKPOINT = os.environ.get("ONNX_CHECKPOINT")
MOBILESAM_CHECKPOINT = os.environ.get("MOBILESAM_CHECKPOINT", "mobile_sam.pt")
LABEL_STUDIO_ACCESS_TOKEN = os.environ.get("LABEL_STUDIO_ACCESS_TOKEN")
LABEL_STUDIO_HOST = os.environ.get("LABEL_STUDIO_HOST")


class SAMPredictor(object):

    def __init__(self, model_choice):
        self.model_choice = model_choice

        # cache for embeddings
        # TODO: currently it supports only one image in cache,
        #   since predictor.set_image() should be called each time the new image comes
        #   before making predictions
        #   to extend it to >1 image, we need to store the "active image" state in the cache
        self.cache = InMemoryLRUDictCache(1)

        # if you're not using CUDA, use "cpu" instead .... good luck not burning your computer lol
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        logger.debug(f"Using device {self.device}")

        if model_choice == 'ONNX':
            import onnxruntime
            from segment_anything import sam_model_registry, SamPredictor

            self.model_checkpoint = VITH_CHECKPOINT
            if self.model_checkpoint is None:
                raise FileNotFoundError("VITH_CHECKPOINT is not set: please set it to the path to the SAM checkpoint")
            if ONNX_CHECKPOINT is None:
                raise FileNotFoundError("ONNX_CHECKPOINT is not set: please set it to the path to the ONNX checkpoint")
            logger.info(f"Using ONNX checkpoint {ONNX_CHECKPOINT} and SAM checkpoint {self.model_checkpoint}")

            self.ort = onnxruntime.InferenceSession(ONNX_CHECKPOINT)
            reg_key = "vit_h"

        elif model_choice == 'SAM':
            from segment_anything import SamPredictor, sam_model_registry

            self.model_checkpoint = VITH_CHECKPOINT
            if self.model_checkpoint is None:
                raise FileNotFoundError("VITH_CHECKPOINT is not set: please set it to the path to the SAM checkpoint")

            logger.info(f"Using SAM checkpoint {self.model_checkpoint}")
            reg_key = "vit_h"

        elif model_choice == 'MobileSAM':
            from mobile_sam import SamPredictor, sam_model_registry

            self.model_checkpoint = MOBILESAM_CHECKPOINT
            if not self.model_checkpoint:
                raise FileNotFoundError("MOBILE_CHECKPOINT is not set: please set it to the path to the MobileSAM checkpoint")
            logger.info(f"Using MobileSAM checkpoint {self.model_checkpoint}")
            reg_key = 'vit_t'
        else:
            raise ValueError(f"Invalid model choice {model_choice}")

        sam = sam_model_registry[reg_key](checkpoint=self.model_checkpoint)
        sam.to(device=self.device)
        self.predictor = SamPredictor(sam)

    @property
    def model_name(self):
        return f'{self.model_choice}:{self.model_checkpoint}:{self.device}'

    def set_image(self, img_path, calculate_embeddings=True):
        payload = self.cache.get(img_path)
        if payload is None:
            # Get image and embeddings
            logger.debug(f'Payload not found for {img_path} in `IN_MEM_CACHE`: calculating from scratch')
            image_path = get_image_local_path(
                img_path,
                label_studio_access_token=LABEL_STUDIO_ACCESS_TOKEN,
                label_studio_host=LABEL_STUDIO_HOST
            )
            image = cv2.imread(image_path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            self.predictor.set_image(image)
            payload = {'image_shape': image.shape[:2]}
            logger.debug(f'Finished set_image({img_path}) in `IN_MEM_CACHE`: image shape {image.shape[:2]}')
            if calculate_embeddings:
                image_embedding = self.predictor.get_image_embedding().cpu().numpy()
                payload['image_embedding'] = image_embedding
                logger.debug(f'Finished storing embeddings for {img_path} in `IN_MEM_CACHE`: '
                             f'embedding shape {image_embedding.shape}')
            self.cache.put(img_path, payload)
        else:
            logger.debug(f"Using embeddings for {img_path} from `IN_MEM_CACHE`")
        return payload

    def predict_onnx(
        self,
        img_path,
        point_coords: Optional[List[List]] = None,
        point_labels: Optional[List] = None,
        input_box: Optional[List] = None
    ):
        # calculate embeddings
        payload = self.set_image(img_path, calculate_embeddings=True)
        image_shape = payload['image_shape']
        image_embedding = payload['image_embedding']

        onnx_point_coords = np.array(point_coords, dtype=np.float32) if point_coords else None
        onnx_point_labels = np.array(point_labels, dtype=np.float32) if point_labels else None
        onnx_box_coords = np.array(input_box, dtype=np.float32).reshape(2, 2) if input_box else None

        onnx_coords, onnx_labels = None, None
        if onnx_point_coords is not None and onnx_box_coords is not None:
            # both keypoints and boxes are present
            onnx_coords = np.concatenate([onnx_point_coords, onnx_box_coords], axis=0)[None, :, :]
            onnx_labels = np.concatenate([onnx_point_labels, np.array([2, 3])], axis=0)[None, :].astype(np.float32)

        elif onnx_point_coords is not None:
            # only keypoints are present
            onnx_coords = np.concatenate([onnx_point_coords, np.array([[0.0, 0.0]])], axis=0)[None, :, :]
            onnx_labels = np.concatenate([onnx_point_labels, np.array([-1])], axis=0)[None, :].astype(np.float32)

        elif onnx_box_coords is not None:
            # only boxes are present
            raise NotImplementedError("Boxes without keypoints are not supported yet")

        onnx_coords = self.predictor.transform.apply_coords(onnx_coords, image_shape).astype(np.float32)

        # TODO: support mask inputs
        onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)

        onnx_has_mask_input = np.zeros(1, dtype=np.float32)

        ort_inputs = {
            "image_embeddings": image_embedding,
            "point_coords": onnx_coords,
            "point_labels": onnx_labels,
            "mask_input": onnx_mask_input,
            "has_mask_input": onnx_has_mask_input,
            "orig_im_size": np.array(image_shape, dtype=np.float32)
        }

        masks, prob, low_res_logits = self.ort.run(None, ort_inputs)
        masks = masks > self.predictor.model.mask_threshold
        mask = masks[0, 0, :, :].astype(np.uint8)  # each mask has shape [H, W]
        prob = float(prob[0][0])
        # TODO: support the real multimask output as in https://github.com/facebookresearch/segment-anything/blob/main/notebooks/predictor_example.ipynb
        return {
            'masks': [mask],
            'probs': [prob]
        }

    def predict_sam(
        self,
        img_path,
        point_coords: Optional[List[List]] = None,
        point_labels: Optional[List] = None,
        input_box: Optional[List] = None
    ):
        self.set_image(img_path, calculate_embeddings=False)
        point_coords = np.array(point_coords, dtype=np.float32) if point_coords else None
        point_labels = np.array(point_labels, dtype=np.float32) if point_labels else None
        input_box = np.array(input_box, dtype=np.float32) if input_box else None

        masks, probs, logits = self.predictor.predict(
            point_coords=point_coords,
            point_labels=point_labels,
            box=input_box,
            # TODO: support multimask output
            multimask_output=False
        )
        mask = masks[0, :, :].astype(np.uint8)  # each mask has shape [H, W]
        prob = float(probs[0])
        return {
            'masks': [mask],
            'probs': [prob]
        }

    def predict(
        self, img_path: str,
        point_coords: Optional[List[List]] = None,
        point_labels: Optional[List] = None,
        input_box: Optional[List] = None
    ):
        if self.model_choice == 'ONNX':
            return self.predict_onnx(img_path, point_coords, point_labels, input_box)
        elif self.model_choice in ('SAM', 'MobileSAM'):
            return self.predict_sam(img_path, point_coords, point_labels, input_box)
        else:
            raise NotImplementedError(f"Model choice {self.model_choice} is not supported yet")