segment-anything / model.py
hogepodge's picture
Initial commit of the Label Studio Segment Anything space
6307f85
raw
history blame
5.42 kB
import os
from label_studio_converter import brush
from typing import List, Dict, Optional
from uuid import uuid4
from sam_predictor import SAMPredictor
from label_studio_ml.model import LabelStudioMLBase
SAM_CHOICE = os.environ.get("SAM_CHOICE", "MobileSAM") # other option is just SAM
PREDICTOR = SAMPredictor(SAM_CHOICE)
class SamMLBackend(LabelStudioMLBase):
def predict(self, tasks: List[Dict], context: Optional[Dict] = None, **kwargs) -> List[Dict]:
""" Returns the predicted mask for a smart keypoint that has been placed."""
from_name, to_name, value = self.get_first_tag_occurence('BrushLabels', 'Image')
if not context or not context.get('result'):
# if there is no context, no interaction has happened yet
return []
image_width = context['result'][0]['original_width']
image_height = context['result'][0]['original_height']
# collect context information
point_coords = []
point_labels = []
input_box = None
selected_label = None
for ctx in context['result']:
x = ctx['value']['x'] * image_width / 100
y = ctx['value']['y'] * image_height / 100
ctx_type = ctx['type']
selected_label = ctx['value'][ctx_type][0]
if ctx_type == 'keypointlabels':
point_labels.append(int(ctx['is_positive']))
point_coords.append([int(x), int(y)])
elif ctx_type == 'rectanglelabels':
box_width = ctx['value']['width'] * image_width / 100
box_height = ctx['value']['height'] * image_height / 100
input_box = [int(x), int(y), int(box_width + x), int(box_height + y)]
print(f'Point coords are {point_coords}, point labels are {point_labels}, input box is {input_box}')
img_path = tasks[0]['data'][value]
predictor_results = PREDICTOR.predict(
img_path=img_path,
point_coords=point_coords or None,
point_labels=point_labels or None,
input_box=input_box
)
predictions = self.get_results(
masks=predictor_results['masks'],
probs=predictor_results['probs'],
width=image_width,
height=image_height,
from_name=from_name,
to_name=to_name,
label=selected_label)
return predictions
def get_results(self, masks, probs, width, height, from_name, to_name, label):
results = []
for mask, prob in zip(masks, probs):
# creates a random ID for your label everytime so no chance for errors
label_id = str(uuid4())[:4]
# converting the mask from the model to RLE format which is usable in Label Studio
mask = mask * 255
rle = brush.mask2rle(mask)
results.append({
'id': label_id,
'from_name': from_name,
'to_name': to_name,
'original_width': width,
'original_height': height,
'image_rotation': 0,
'value': {
'format': 'rle',
'rle': rle,
'brushlabels': [label],
},
'score': prob,
'type': 'brushlabels',
'readonly': False
})
return [{
'result': results,
'model_version': PREDICTOR.model_name
}]
if __name__ == '__main__':
# test the model
model = SamMLBackend()
model.use_label_config('''
<View>
<Image name="image" value="$image" zoom="true"/>
<BrushLabels name="tag" toName="image">
<Label value="Banana" background="#FF0000"/>
<Label value="Orange" background="#0d14d3"/>
</BrushLabels>
<KeyPointLabels name="tag2" toName="image" smart="true" >
<Label value="Banana" background="#000000" showInline="true"/>
<Label value="Orange" background="#000000" showInline="true"/>
</KeyPointLabels>
<RectangleLabels name="tag3" toName="image" >
<Label value="Banana" background="#000000" showInline="true"/>
<Label value="Orange" background="#000000" showInline="true"/>
</RectangleLabels>
</View>
''')
results = model.predict(
tasks=[{
'data': {
'image': 'https://s3.amazonaws.com/htx-pub/datasets/images/125245483_152578129892066_7843809718842085333_n.jpg'
}}],
context={
'result': [{
'original_width': 1080,
'original_height': 1080,
'image_rotation': 0,
'value': {
'x': 49.441786283891545,
'y': 59.96810207336522,
'width': 0.3189792663476874,
'labels': ['Banana'],
'keypointlabels': ['Banana']
},
'is_positive': True,
'id': 'fBWv1t0S2L',
'from_name': 'tag2',
'to_name': 'image',
'type': 'keypointlabels',
'origin': 'manual'
}]}
)
import json
results[0]['result'][0]['value']['rle'] = f'...{len(results[0]["result"][0]["value"]["rle"])} integers...'
print(json.dumps(results, indent=2))