File size: 24,964 Bytes
86971d9
 
 
 
 
 
 
 
14a5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86971d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ec16ee
 
86971d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a5579
86971d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a5579
 
 
 
 
 
 
 
 
 
 
86971d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a5579
86971d9
 
 
 
 
 
 
14a5579
86971d9
 
 
 
 
 
 
14a5579
 
 
 
 
 
86971d9
 
 
 
 
 
14a5579
 
 
 
 
 
 
 
b401ae1
14a5579
 
b401ae1
14a5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86971d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a5579
86971d9
 
14a5579
 
86971d9
14a5579
 
b401ae1
86971d9
 
14a5579
 
 
86971d9
 
 
14a5579
 
 
86971d9
 
 
14a5579
 
 
86971d9
 
 
 
 
 
 
 
14a5579
86971d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404f2ee
 
14a5579
 
 
 
404f2ee
 
 
 
 
 
14a5579
 
404f2ee
14a5579
 
 
 
 
 
 
 
 
 
404f2ee
14a5579
 
 
 
 
 
 
404f2ee
14a5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import streamlit as st
import requests
import re
import json
import time
import pandas as pd
import labelbox

@st.cache_data(show_spinner=True)
def fetch_databases(cluster_id, formatted_title, databricks_api_key):
    query = "SHOW DATABASES;"
    return execute_databricks_query(query, cluster_id, formatted_title, databricks_api_key)

# Cached function to fetch tables
@st.cache_data(show_spinner=True)
def fetch_tables(selected_database, cluster_id, formatted_title, databricks_api_key):
    query = f"SHOW TABLES IN {selected_database};"
    return execute_databricks_query(query, cluster_id, formatted_title, databricks_api_key)

# Cached function to fetch columns
@st.cache_data(show_spinner=True)
def fetch_columns(selected_database, selected_table, cluster_id, formatted_title, databricks_api_key):
    query = f"SHOW COLUMNS IN {selected_database}.{selected_table};"
    return execute_databricks_query(query, cluster_id, formatted_title, databricks_api_key)

def validate_dataset_name(name):
    """Validate the dataset name."""
    # Check length
    if len(name) > 256:
        return "Dataset name should be limited to 256 characters."
    # Check allowed characters
    allowed_characters_pattern = re.compile(r'^[A-Za-z0-9 _\-.,()\/]+$')
    if not allowed_characters_pattern.match(name):
        return ("Dataset name can only contain letters, numbers, spaces, and the following punctuation symbols: _-.,()/. Other characters are not supported.")
    return None

def create_new_dataset_labelbox (new_dataset_name):
    client = labelbox.Client(api_key=labelbox_api_key)
    dataset_name = new_dataset_name
    dataset = client.create_dataset(name=dataset_name)
    dataset_id = dataset.uid
    return dataset_id


def get_dataset_from_labelbox(labelbox_api_key):
    client = labelbox.Client(api_key=labelbox_api_key)
    datasets = client.get_datasets()
    return datasets

def destroy_databricks_context(cluster_id, context_id, domain, databricks_api_key):
    DOMAIN = f"https://{domain}"
    TOKEN = f"Bearer {databricks_api_key}"

    headers = {
        "Authorization": TOKEN,
        "Content-Type": "application/json",
    }

    # Destroy context
    destroy_payload = {
        "clusterId": cluster_id,
        "contextId": context_id
    }
    destroy_response = requests.post(
        f"{DOMAIN}/api/1.2/contexts/destroy",
        headers=headers,
        data=json.dumps(destroy_payload)
    )

    if destroy_response.status_code != 200:
        raise ValueError("Failed to destroy context.")
    
def execute_databricks_query(query, cluster_id, domain, databricks_api_key):
    DOMAIN = f"https://{domain}"
    TOKEN = f"Bearer {databricks_api_key}"

    headers = {
        "Authorization": TOKEN,
        "Content-Type": "application/json",
    }

    # Create context
    context_payload = {
        "clusterId": cluster_id,
        "language": "sql"
    }
    context_response = requests.post(
        f"{DOMAIN}/api/1.2/contexts/create",
        headers=headers,
        data=json.dumps(context_payload)
    )
    context_response_data = context_response.json()

    if 'id' not in context_response_data:
        raise ValueError("Failed to create context.")
    context_id = context_response_data['id']

    # Execute query
    command_payload = {
        "clusterId": cluster_id,
        "contextId": context_id,
        "language": "sql",
        "command": query
    }
    command_response = requests.post(
        f"{DOMAIN}/api/1.2/commands/execute",
        headers=headers,
        data=json.dumps(command_payload)
    ).json()

    if 'id' not in command_response:
        raise ValueError("Failed to execute command.")
    command_id = command_response['id']

    # Wait for the command to complete
    while True:
        status_response = requests.get(
            f"{DOMAIN}/api/1.2/commands/status",
            headers=headers,
            params={
                "clusterId": cluster_id,
                "contextId": context_id,
                "commandId": command_id
            }
        ).json()

        command_status = status_response.get("status")

        if command_status == "Finished":
            break
        elif command_status in ["Error", "Cancelled"]:
            raise ValueError(f"Command {command_status}. Reason: {status_response.get('results', {}).get('summary')}")
        else:
            time.sleep(1)  # Wait for 5 seconds before checking again

    # Convert the results into a pandas DataFrame
    data = status_response.get('results', {}).get('data', [])
    columns = [col['name'] for col in status_response.get('results', {}).get('schema', [])]
    df = pd.DataFrame(data, columns=columns)

    destroy_databricks_context(cluster_id, context_id, domain, databricks_api_key)
    
    return df


st.title("Labelbox 🀝 Databricks")
st.header("Pipeline Creator", divider='rainbow')



def is_valid_url_or_uri(value):
    """Check if the provided value is a valid URL or URI."""
    # Check general URLs
    url_pattern = re.compile(
        r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
    )
    
    # Check general URIs including cloud storage URIs (like gs://, s3://, etc.)
    uri_pattern = re.compile(
        r'^(?:[a-z][a-z0-9+.-]*:|/)(?:/?[^\s]*)?$|^(gs|s3|azure|blob)://[^\s]+'
    )
    
    return url_pattern.match(value) or uri_pattern.match(value)



is_preview = st.toggle('Run in Preview Mode', value=False)
if is_preview:
    st.success('Running in Preview mode!', icon="βœ…")
else:
    st.success('Running in Production mode!', icon="βœ…")

st.subheader("Tell us about your Databricks and Labelbox environments", divider='grey')
#cloud = "GCP"
cloud = st.selectbox('Which cloud environment does your Databricks Workspace run in?', ['AWS', 'Azure', 'GCP'], index=None)
title = st.text_input('Enter Databricks Domain (e.g., <instance>.<cloud>.databricks.com)', '')
databricks_api_key = st.text_input('Databricks API Key', type='password')
labelbox_api_key = st.text_input('Labelbox API Key', type='password')

# After Labelbox API key is entered
if labelbox_api_key:
    # Fetching datasets
    datasets = get_dataset_from_labelbox(labelbox_api_key)
    create_new_dataset = st.toggle("Make me a new dataset", value=False)

    if not create_new_dataset:
        # The existing logic for selecting datasets goes here.
        dataset_name_to_id = {dataset.name: dataset.uid for dataset in datasets}
        selected_dataset_name = st.selectbox("Select an existing dataset:", list(dataset_name_to_id.keys()))
        dataset_id = dataset_name_to_id[selected_dataset_name]

    else:
        # If user toggles "make me a new dataset"
        new_dataset_name = st.text_input("Enter the new dataset name:")

        # Check if the name is valid
        if new_dataset_name:
            validation_message = validate_dataset_name(new_dataset_name)
            if validation_message:
                st.error(validation_message, icon="🚫")
            else:
                st.success(f"Valid dataset name! Dataset_id", icon="βœ…")
                dataset_name = new_dataset_name

# Define the variables beforehand with default values (if not defined)
new_dataset_name = new_dataset_name if 'new_dataset_name' in locals() else None
selected_dataset_name = selected_dataset_name if 'selected_dataset_name' in locals() else None

if new_dataset_name or selected_dataset_name:
    # Handling various formats of input
    formatted_title = re.sub(r'^https?://', '', title)  # Remove http:// or https://
    formatted_title = re.sub(r'/$', '', formatted_title)  # Remove trailing slash if present

    if formatted_title:
        st.subheader("Select an existing cluster", divider='grey', help="Jobs will use job clusters to reduce DBUs consumed.")
        DOMAIN = f"https://{formatted_title}"
        TOKEN = f"Bearer {databricks_api_key}"

        HEADERS = {
            "Authorization": TOKEN,
            "Content-Type": "application/json",
        }

        # Endpoint to list clusters
        ENDPOINT = "/api/2.0/clusters/list"

        try:
            response = requests.get(DOMAIN + ENDPOINT, headers=HEADERS)
            response.raise_for_status()

            # Include clusters with cluster_source "UI" or "API"
            clusters = response.json().get("clusters", [])
            cluster_dict = {
                cluster["cluster_name"]: cluster["cluster_id"]
                for cluster in clusters if cluster.get("cluster_source") in ["UI", "API"]
            }

            # Display dropdown with cluster names
            
            if cluster_dict:
                selected_cluster_name = st.selectbox(
                    'Select a cluster to run on',
                    list(cluster_dict.keys()),
                    key='unique_key_for_cluster_selectbox',
                    index=None,
                    placeholder="Select a cluster..",
                )
                if selected_cluster_name:
                    cluster_id = cluster_dict[selected_cluster_name]

        except requests.RequestException as e:
            st.write(f"Error communicating with Databricks API: {str(e)}")
        except ValueError:
            st.write("Received unexpected response from Databricks API.")

        if selected_cluster_name and cluster_id:
            # Check if the selected cluster is running
            cluster_state = [cluster["state"] for cluster in clusters if cluster["cluster_id"] == cluster_id][0]

            # If the cluster is not running, start it
            if cluster_state != "RUNNING":
                with st.spinner("Starting the selected cluster. This typically takes 10 minutes. Please wait..."):
                    start_response = requests.post(f"{DOMAIN}/api/2.0/clusters/start", headers=HEADERS, json={"cluster_id": cluster_id})
                    start_response.raise_for_status()

                    # Poll until the cluster is up or until timeout
                    start_time = time.time()
                    timeout = 1200  # 20 minutes in seconds
                    while True:
                        cluster_response = requests.get(f"{DOMAIN}/api/2.0/clusters/get", headers=HEADERS, params={"cluster_id": cluster_id}).json()
                        if "state" in cluster_response:
                            if cluster_response["state"] == "RUNNING":
                                break
                            elif cluster_response["state"] in ["TERMINATED", "ERROR"]:
                                st.write(f"Error starting cluster. Current state: {cluster_response['state']}")
                                break

                        if (time.time() - start_time) > timeout:
                            st.write("Timeout reached while starting the cluster.")
                            break

                        time.sleep(10)  # Check every 10 seconds

                st.success(f"{selected_cluster_name} is now running!", icon="πŸƒβ€β™‚οΈ")
            else:
                st.success(f"{selected_cluster_name} is already running!", icon="πŸƒβ€β™‚οΈ")


            def generate_cron_expression(freq, hour=0, minute=0, day_of_week=None, day_of_month=None):
                """
                Generate a cron expression based on the provided frequency and time.
                """
                if freq == "1 minute":
                    return "0 * * * * ?"
                elif freq == "1 hour":
                    return f"0 {minute} * * * ?"
                elif freq == "1 day":
                    return f"0 {minute} {hour} * * ?"
                elif freq == "1 week":
                    if not day_of_week:
                        raise ValueError("Day of week not provided for weekly frequency.")
                    return f"0 {minute} {hour} ? * {day_of_week}"
                elif freq == "1 month":
                    if not day_of_month:
                        raise ValueError("Day of month not provided for monthly frequency.")
                    return f"0 {minute} {hour} {day_of_month} * ?"
                else:
                    raise ValueError("Invalid frequency provided")

            # Streamlit UI
            st.subheader("Run Frequency", divider='grey')

            # Dropdown to select frequency
            freq_options = ["1 day", "1 week", "1 month"]
            selected_freq = st.selectbox("Select frequency:", freq_options, placeholder="Select frequency..")

            day_of_week = None
            day_of_month = None

            # If the frequency is hourly, daily, weekly, or monthly, ask for a specific time
            if selected_freq != "1 minute":
               
                if selected_freq == "1 week":
                    days_options = ["MON", "TUE", "WED", "THU", "FRI", "SAT", "SUN"]
                    day_of_week = st.selectbox("Select day of the week:", days_options)

                elif selected_freq == "1 month":
                    day_of_month = st.selectbox("Select day of the month:", list(range(1, 32)))

                col1, col2 = st.columns(2)    
                with col1:
                    hour = st.selectbox("Hour:", list(range(0, 24)))
                with col2:
                    minute = st.selectbox("Minute:", list(range(0, 60)))

            else:
                hour, minute = 0, 0

            # Generate the cron expression
            frequency = generate_cron_expression(selected_freq, hour, minute, day_of_week, day_of_month)

            # Assumed DBU consumption rate for a 32GB, 4-core node per hour
            X = 1  # Replace this with the actual rate from Databricks' pricing or documentation

            # Calculate DBU consumption for a single run
            min_dbu_single_run = (X/6) * (1 + 10)  # Assuming maximum scaling to 10 workers
            max_dbu_single_run = (2*X/3) * (1 + 10)

            # Estimate monthly DBU consumption based on frequency
            if freq_options == "1 day":
                min_dbu_monthly = 30 * min_dbu_single_run
                max_dbu_monthly = 30 * max_dbu_single_run
            elif freq_options == "1 week":
                min_dbu_monthly = 4 * min_dbu_single_run
                max_dbu_monthly = 4 * max_dbu_single_run
            else:  # Monthly
                min_dbu_monthly = min_dbu_single_run
                max_dbu_monthly = max_dbu_single_run

            # Calculate runs per month
            if selected_freq == "1 day":
                runs_per_month = 30
            elif selected_freq == "1 week":
                runs_per_month = 4
            else:  # "1 month"
                runs_per_month = 1

            # Calculate estimated DBU consumption per month
            min_dbu_monthly = runs_per_month * min_dbu_single_run
            max_dbu_monthly = runs_per_month * max_dbu_single_run

            def generate_human_readable_message(freq, hour=0, minute=0, day_of_week=None, day_of_month=None):
                """
                Generate a human-readable message for the scheduling.
                """
                if freq == "1 minute":
                    return "Job will run every minute."
                elif freq == "1 hour":
                    return f"Job will run once an hour at minute {minute}."
                elif freq == "1 day":
                    return f"Job will run daily at {hour:02}:{minute:02}."
                elif freq == "1 week":
                    if not day_of_week:
                        raise ValueError("Day of week not provided for weekly frequency.")
                    return f"Job will run every {day_of_week} at {hour:02}:{minute:02}."
                elif freq == "1 month":
                    if not day_of_month:
                        raise ValueError("Day of month not provided for monthly frequency.")
                    return f"Job will run once a month on day {day_of_month} at {hour:02}:{minute:02}."
                else:
                    raise ValueError("Invalid frequency provided")

            # Generate the human-readable message
            readable_msg = generate_human_readable_message(selected_freq, hour, minute, day_of_week, day_of_month)

            # Main code block
            if frequency:
                st.success(readable_msg, icon="πŸ“…")
                # Display the estimated DBU consumption to the user
                st.warning(f"Estimated DBU Consumption:\n- For a single run: {min_dbu_single_run:.2f} to {max_dbu_single_run:.2f} DBUs\n- Monthly (based on {runs_per_month} runs): {min_dbu_monthly:.2f} to {max_dbu_monthly:.2f} DBUs")

                # Disclaimer
                st.info("Disclaimer: This is only an estimation. Always monitor the job in Databricks to assess actual DBU consumption.")

                st.subheader("Select a table", divider="grey")

                # Fetching databases
                result_data = fetch_databases(cluster_id, formatted_title, databricks_api_key)
                database_names = result_data['databaseName'].tolist()
                selected_database = st.selectbox("Select a Database:", database_names, index=None, placeholder="Select a database..")

                if selected_database:
                    # Fetching tables
                    result_data = fetch_tables(selected_database, cluster_id, formatted_title, databricks_api_key)
                    table_names = result_data['tableName'].tolist()
                    selected_table = st.selectbox("Select a Table:", table_names, index=None, placeholder="Select a table..")

                    if selected_table:
                        # Fetching columns
                        result_data = fetch_columns(selected_database, selected_table, cluster_id, formatted_title, databricks_api_key)
                        column_names = result_data['col_name'].tolist()

                        st.subheader("Map table schema to Labelbox schema", divider="grey")
                        # Your existing code to handle schema mapping...

                        # Fetch the first 5 rows of the selected table
                        with st.spinner('Fetching first 5 rows of the selected table...'):
                            query = f"SELECT * FROM {selected_database}.{selected_table} LIMIT 5;"
                            table_sample_data = execute_databricks_query(query, cluster_id, formatted_title, databricks_api_key)
                            st.write(table_sample_data)

                        # Define two columns for side-by-side selectboxes
                        col1, col2 = st.columns(2)

                        with col1:
                            selected_row_data = st.selectbox(
                                "row_data (required):", 
                                column_names, 
                                index=None, 
                                placeholder="Select a column..", 
                                help="Select the column that contains the URL/URI bucket location of the data rows you wish to import into Labelbox."
                            )

                        with col2:
                            selected_global_key = st.selectbox(
                                "global_key (optional):", 
                                column_names, 
                                index=None, 
                                placeholder="Select a column..", 
                                help="Select the column that contains the global key. If not provided, a new key will be generated for you."
                            )

                        # Fetch a single row from the selected table
                        query_sample_row = f"SELECT * FROM {selected_database}.{selected_table} LIMIT 1;"
                        result_sample = execute_databricks_query(query_sample_row, cluster_id, formatted_title, databricks_api_key)
                        
                        if selected_row_data:
                            # Extract the value from the selected row_data column
                            sample_row_data_value = result_sample[selected_row_data].iloc[0]

                            # Validate the extracted value
                            dataset_id = create_new_dataset_labelbox(new_dataset_name) if create_new_dataset else dataset_id
                            # Mode
                            mode = "preview" if is_preview else "production"

                            # Databricks instance and API key
                            databricks_instance = formatted_title
                            databricks_api_key = databricks_api_key

                            # Dataset ID and New Dataset
                            new_dataset = 1 if create_new_dataset else 0
                            dataset_id = dataset_id 

                            # Table Path
                            table_path = f"{selected_database}.{selected_table}"
                            # Frequency
                            frequency = frequency

                            # Schema Map
                            row_data_input = selected_row_data
                            global_key_input = selected_global_key

                            # Create the initial dictionary
                            schema_map_dict = {'row_data': row_data_input}
                            if global_key_input:
                                schema_map_dict['global_key'] = global_key_input

                            # Swap keys and values
                            reversed_schema_map_dict = {v: k for k, v in schema_map_dict.items()}

                            # Convert the reversed dictionary to a stringified JSON
                            reversed_schema_map_str = json.dumps(reversed_schema_map_dict)
                                                        
                    
                            data = {
                                "cloud": cloud,
                                "mode": mode,
                                "databricks_instance": databricks_instance,
                                "databricks_api_key": databricks_api_key,
                                "new_dataset": new_dataset,
                                "dataset_id": dataset_id,
                                "table_path": table_path,
                                "labelbox_api_key": labelbox_api_key,
                                "frequency": frequency,
                                "new_cluster": 0,
                                "cluster_id": cluster_id,
                                "schema_map": reversed_schema_map_str
                            }
                            

                            if st.button("Deploy Pipeline!", type="primary"):
                                # Ensure all fields are filled out
                                required_fields = [
                                    mode, databricks_instance, databricks_api_key, new_dataset, dataset_id,
                                    table_path, labelbox_api_key, frequency, cluster_id, reversed_schema_map_str
                                ]


                                # Sending a POST request to the Flask app endpoint
                                with st.spinner("Deploying pipeline..."):
                                    response = requests.post("https://us-central1-dbt-prod.cloudfunctions.net/deploy-databricks-pipeline", json=data)

                                # Check if request was successful
                                if response.status_code == 200:
                                    # Display the response using Streamlit
                                    st.balloons()
                                    response = response.json()
                                    # Extract the job_id
                                    job_id = response['message'].split('job_id":')[1].split('}')[0]
                                    from urllib.parse import urlparse, parse_qs

                                    # Parse the Databricks instance URL to extract the organization ID
                                    parsed_url = urlparse(formatted_title)
                                    query_params = parse_qs(parsed_url.query)
                                    organization_id = query_params.get("o", [""])[0]

                                    # Generate the Databricks Job URL
                                    job_url = f"http://{formatted_title}/?o={organization_id}#job/{job_id}"
                                    st.success(f"Pipeline deployed successfully! [{job_url}]({job_url}) πŸš€")
                                else:
                                    st.error(f"Failed to deploy pipeline. Response: {response.text}", icon="🚫")

st.markdown("""
<style>
/* Add a large bottom padding to the main content */
.main .block-container {
    padding-bottom: 1000px;  /* Adjust this value as needed */
}
</style>
""", unsafe_allow_html=True)