Spaces:
Sleeping
Sleeping
File size: 24,964 Bytes
86971d9 14a5579 86971d9 4ec16ee 86971d9 14a5579 86971d9 14a5579 86971d9 14a5579 86971d9 14a5579 86971d9 14a5579 86971d9 14a5579 b401ae1 14a5579 b401ae1 14a5579 86971d9 14a5579 86971d9 14a5579 86971d9 14a5579 b401ae1 86971d9 14a5579 86971d9 14a5579 86971d9 14a5579 86971d9 14a5579 86971d9 14a5579 404f2ee 14a5579 404f2ee 14a5579 404f2ee 14a5579 404f2ee 14a5579 404f2ee 14a5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import streamlit as st
import requests
import re
import json
import time
import pandas as pd
import labelbox
@st.cache_data(show_spinner=True)
def fetch_databases(cluster_id, formatted_title, databricks_api_key):
query = "SHOW DATABASES;"
return execute_databricks_query(query, cluster_id, formatted_title, databricks_api_key)
# Cached function to fetch tables
@st.cache_data(show_spinner=True)
def fetch_tables(selected_database, cluster_id, formatted_title, databricks_api_key):
query = f"SHOW TABLES IN {selected_database};"
return execute_databricks_query(query, cluster_id, formatted_title, databricks_api_key)
# Cached function to fetch columns
@st.cache_data(show_spinner=True)
def fetch_columns(selected_database, selected_table, cluster_id, formatted_title, databricks_api_key):
query = f"SHOW COLUMNS IN {selected_database}.{selected_table};"
return execute_databricks_query(query, cluster_id, formatted_title, databricks_api_key)
def validate_dataset_name(name):
"""Validate the dataset name."""
# Check length
if len(name) > 256:
return "Dataset name should be limited to 256 characters."
# Check allowed characters
allowed_characters_pattern = re.compile(r'^[A-Za-z0-9 _\-.,()\/]+$')
if not allowed_characters_pattern.match(name):
return ("Dataset name can only contain letters, numbers, spaces, and the following punctuation symbols: _-.,()/. Other characters are not supported.")
return None
def create_new_dataset_labelbox (new_dataset_name):
client = labelbox.Client(api_key=labelbox_api_key)
dataset_name = new_dataset_name
dataset = client.create_dataset(name=dataset_name)
dataset_id = dataset.uid
return dataset_id
def get_dataset_from_labelbox(labelbox_api_key):
client = labelbox.Client(api_key=labelbox_api_key)
datasets = client.get_datasets()
return datasets
def destroy_databricks_context(cluster_id, context_id, domain, databricks_api_key):
DOMAIN = f"https://{domain}"
TOKEN = f"Bearer {databricks_api_key}"
headers = {
"Authorization": TOKEN,
"Content-Type": "application/json",
}
# Destroy context
destroy_payload = {
"clusterId": cluster_id,
"contextId": context_id
}
destroy_response = requests.post(
f"{DOMAIN}/api/1.2/contexts/destroy",
headers=headers,
data=json.dumps(destroy_payload)
)
if destroy_response.status_code != 200:
raise ValueError("Failed to destroy context.")
def execute_databricks_query(query, cluster_id, domain, databricks_api_key):
DOMAIN = f"https://{domain}"
TOKEN = f"Bearer {databricks_api_key}"
headers = {
"Authorization": TOKEN,
"Content-Type": "application/json",
}
# Create context
context_payload = {
"clusterId": cluster_id,
"language": "sql"
}
context_response = requests.post(
f"{DOMAIN}/api/1.2/contexts/create",
headers=headers,
data=json.dumps(context_payload)
)
context_response_data = context_response.json()
if 'id' not in context_response_data:
raise ValueError("Failed to create context.")
context_id = context_response_data['id']
# Execute query
command_payload = {
"clusterId": cluster_id,
"contextId": context_id,
"language": "sql",
"command": query
}
command_response = requests.post(
f"{DOMAIN}/api/1.2/commands/execute",
headers=headers,
data=json.dumps(command_payload)
).json()
if 'id' not in command_response:
raise ValueError("Failed to execute command.")
command_id = command_response['id']
# Wait for the command to complete
while True:
status_response = requests.get(
f"{DOMAIN}/api/1.2/commands/status",
headers=headers,
params={
"clusterId": cluster_id,
"contextId": context_id,
"commandId": command_id
}
).json()
command_status = status_response.get("status")
if command_status == "Finished":
break
elif command_status in ["Error", "Cancelled"]:
raise ValueError(f"Command {command_status}. Reason: {status_response.get('results', {}).get('summary')}")
else:
time.sleep(1) # Wait for 5 seconds before checking again
# Convert the results into a pandas DataFrame
data = status_response.get('results', {}).get('data', [])
columns = [col['name'] for col in status_response.get('results', {}).get('schema', [])]
df = pd.DataFrame(data, columns=columns)
destroy_databricks_context(cluster_id, context_id, domain, databricks_api_key)
return df
st.title("Labelbox π€ Databricks")
st.header("Pipeline Creator", divider='rainbow')
def is_valid_url_or_uri(value):
"""Check if the provided value is a valid URL or URI."""
# Check general URLs
url_pattern = re.compile(
r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
)
# Check general URIs including cloud storage URIs (like gs://, s3://, etc.)
uri_pattern = re.compile(
r'^(?:[a-z][a-z0-9+.-]*:|/)(?:/?[^\s]*)?$|^(gs|s3|azure|blob)://[^\s]+'
)
return url_pattern.match(value) or uri_pattern.match(value)
is_preview = st.toggle('Run in Preview Mode', value=False)
if is_preview:
st.success('Running in Preview mode!', icon="β
")
else:
st.success('Running in Production mode!', icon="β
")
st.subheader("Tell us about your Databricks and Labelbox environments", divider='grey')
#cloud = "GCP"
cloud = st.selectbox('Which cloud environment does your Databricks Workspace run in?', ['AWS', 'Azure', 'GCP'], index=None)
title = st.text_input('Enter Databricks Domain (e.g., <instance>.<cloud>.databricks.com)', '')
databricks_api_key = st.text_input('Databricks API Key', type='password')
labelbox_api_key = st.text_input('Labelbox API Key', type='password')
# After Labelbox API key is entered
if labelbox_api_key:
# Fetching datasets
datasets = get_dataset_from_labelbox(labelbox_api_key)
create_new_dataset = st.toggle("Make me a new dataset", value=False)
if not create_new_dataset:
# The existing logic for selecting datasets goes here.
dataset_name_to_id = {dataset.name: dataset.uid for dataset in datasets}
selected_dataset_name = st.selectbox("Select an existing dataset:", list(dataset_name_to_id.keys()))
dataset_id = dataset_name_to_id[selected_dataset_name]
else:
# If user toggles "make me a new dataset"
new_dataset_name = st.text_input("Enter the new dataset name:")
# Check if the name is valid
if new_dataset_name:
validation_message = validate_dataset_name(new_dataset_name)
if validation_message:
st.error(validation_message, icon="π«")
else:
st.success(f"Valid dataset name! Dataset_id", icon="β
")
dataset_name = new_dataset_name
# Define the variables beforehand with default values (if not defined)
new_dataset_name = new_dataset_name if 'new_dataset_name' in locals() else None
selected_dataset_name = selected_dataset_name if 'selected_dataset_name' in locals() else None
if new_dataset_name or selected_dataset_name:
# Handling various formats of input
formatted_title = re.sub(r'^https?://', '', title) # Remove http:// or https://
formatted_title = re.sub(r'/$', '', formatted_title) # Remove trailing slash if present
if formatted_title:
st.subheader("Select an existing cluster", divider='grey', help="Jobs will use job clusters to reduce DBUs consumed.")
DOMAIN = f"https://{formatted_title}"
TOKEN = f"Bearer {databricks_api_key}"
HEADERS = {
"Authorization": TOKEN,
"Content-Type": "application/json",
}
# Endpoint to list clusters
ENDPOINT = "/api/2.0/clusters/list"
try:
response = requests.get(DOMAIN + ENDPOINT, headers=HEADERS)
response.raise_for_status()
# Include clusters with cluster_source "UI" or "API"
clusters = response.json().get("clusters", [])
cluster_dict = {
cluster["cluster_name"]: cluster["cluster_id"]
for cluster in clusters if cluster.get("cluster_source") in ["UI", "API"]
}
# Display dropdown with cluster names
if cluster_dict:
selected_cluster_name = st.selectbox(
'Select a cluster to run on',
list(cluster_dict.keys()),
key='unique_key_for_cluster_selectbox',
index=None,
placeholder="Select a cluster..",
)
if selected_cluster_name:
cluster_id = cluster_dict[selected_cluster_name]
except requests.RequestException as e:
st.write(f"Error communicating with Databricks API: {str(e)}")
except ValueError:
st.write("Received unexpected response from Databricks API.")
if selected_cluster_name and cluster_id:
# Check if the selected cluster is running
cluster_state = [cluster["state"] for cluster in clusters if cluster["cluster_id"] == cluster_id][0]
# If the cluster is not running, start it
if cluster_state != "RUNNING":
with st.spinner("Starting the selected cluster. This typically takes 10 minutes. Please wait..."):
start_response = requests.post(f"{DOMAIN}/api/2.0/clusters/start", headers=HEADERS, json={"cluster_id": cluster_id})
start_response.raise_for_status()
# Poll until the cluster is up or until timeout
start_time = time.time()
timeout = 1200 # 20 minutes in seconds
while True:
cluster_response = requests.get(f"{DOMAIN}/api/2.0/clusters/get", headers=HEADERS, params={"cluster_id": cluster_id}).json()
if "state" in cluster_response:
if cluster_response["state"] == "RUNNING":
break
elif cluster_response["state"] in ["TERMINATED", "ERROR"]:
st.write(f"Error starting cluster. Current state: {cluster_response['state']}")
break
if (time.time() - start_time) > timeout:
st.write("Timeout reached while starting the cluster.")
break
time.sleep(10) # Check every 10 seconds
st.success(f"{selected_cluster_name} is now running!", icon="πββοΈ")
else:
st.success(f"{selected_cluster_name} is already running!", icon="πββοΈ")
def generate_cron_expression(freq, hour=0, minute=0, day_of_week=None, day_of_month=None):
"""
Generate a cron expression based on the provided frequency and time.
"""
if freq == "1 minute":
return "0 * * * * ?"
elif freq == "1 hour":
return f"0 {minute} * * * ?"
elif freq == "1 day":
return f"0 {minute} {hour} * * ?"
elif freq == "1 week":
if not day_of_week:
raise ValueError("Day of week not provided for weekly frequency.")
return f"0 {minute} {hour} ? * {day_of_week}"
elif freq == "1 month":
if not day_of_month:
raise ValueError("Day of month not provided for monthly frequency.")
return f"0 {minute} {hour} {day_of_month} * ?"
else:
raise ValueError("Invalid frequency provided")
# Streamlit UI
st.subheader("Run Frequency", divider='grey')
# Dropdown to select frequency
freq_options = ["1 day", "1 week", "1 month"]
selected_freq = st.selectbox("Select frequency:", freq_options, placeholder="Select frequency..")
day_of_week = None
day_of_month = None
# If the frequency is hourly, daily, weekly, or monthly, ask for a specific time
if selected_freq != "1 minute":
if selected_freq == "1 week":
days_options = ["MON", "TUE", "WED", "THU", "FRI", "SAT", "SUN"]
day_of_week = st.selectbox("Select day of the week:", days_options)
elif selected_freq == "1 month":
day_of_month = st.selectbox("Select day of the month:", list(range(1, 32)))
col1, col2 = st.columns(2)
with col1:
hour = st.selectbox("Hour:", list(range(0, 24)))
with col2:
minute = st.selectbox("Minute:", list(range(0, 60)))
else:
hour, minute = 0, 0
# Generate the cron expression
frequency = generate_cron_expression(selected_freq, hour, minute, day_of_week, day_of_month)
# Assumed DBU consumption rate for a 32GB, 4-core node per hour
X = 1 # Replace this with the actual rate from Databricks' pricing or documentation
# Calculate DBU consumption for a single run
min_dbu_single_run = (X/6) * (1 + 10) # Assuming maximum scaling to 10 workers
max_dbu_single_run = (2*X/3) * (1 + 10)
# Estimate monthly DBU consumption based on frequency
if freq_options == "1 day":
min_dbu_monthly = 30 * min_dbu_single_run
max_dbu_monthly = 30 * max_dbu_single_run
elif freq_options == "1 week":
min_dbu_monthly = 4 * min_dbu_single_run
max_dbu_monthly = 4 * max_dbu_single_run
else: # Monthly
min_dbu_monthly = min_dbu_single_run
max_dbu_monthly = max_dbu_single_run
# Calculate runs per month
if selected_freq == "1 day":
runs_per_month = 30
elif selected_freq == "1 week":
runs_per_month = 4
else: # "1 month"
runs_per_month = 1
# Calculate estimated DBU consumption per month
min_dbu_monthly = runs_per_month * min_dbu_single_run
max_dbu_monthly = runs_per_month * max_dbu_single_run
def generate_human_readable_message(freq, hour=0, minute=0, day_of_week=None, day_of_month=None):
"""
Generate a human-readable message for the scheduling.
"""
if freq == "1 minute":
return "Job will run every minute."
elif freq == "1 hour":
return f"Job will run once an hour at minute {minute}."
elif freq == "1 day":
return f"Job will run daily at {hour:02}:{minute:02}."
elif freq == "1 week":
if not day_of_week:
raise ValueError("Day of week not provided for weekly frequency.")
return f"Job will run every {day_of_week} at {hour:02}:{minute:02}."
elif freq == "1 month":
if not day_of_month:
raise ValueError("Day of month not provided for monthly frequency.")
return f"Job will run once a month on day {day_of_month} at {hour:02}:{minute:02}."
else:
raise ValueError("Invalid frequency provided")
# Generate the human-readable message
readable_msg = generate_human_readable_message(selected_freq, hour, minute, day_of_week, day_of_month)
# Main code block
if frequency:
st.success(readable_msg, icon="π
")
# Display the estimated DBU consumption to the user
st.warning(f"Estimated DBU Consumption:\n- For a single run: {min_dbu_single_run:.2f} to {max_dbu_single_run:.2f} DBUs\n- Monthly (based on {runs_per_month} runs): {min_dbu_monthly:.2f} to {max_dbu_monthly:.2f} DBUs")
# Disclaimer
st.info("Disclaimer: This is only an estimation. Always monitor the job in Databricks to assess actual DBU consumption.")
st.subheader("Select a table", divider="grey")
# Fetching databases
result_data = fetch_databases(cluster_id, formatted_title, databricks_api_key)
database_names = result_data['databaseName'].tolist()
selected_database = st.selectbox("Select a Database:", database_names, index=None, placeholder="Select a database..")
if selected_database:
# Fetching tables
result_data = fetch_tables(selected_database, cluster_id, formatted_title, databricks_api_key)
table_names = result_data['tableName'].tolist()
selected_table = st.selectbox("Select a Table:", table_names, index=None, placeholder="Select a table..")
if selected_table:
# Fetching columns
result_data = fetch_columns(selected_database, selected_table, cluster_id, formatted_title, databricks_api_key)
column_names = result_data['col_name'].tolist()
st.subheader("Map table schema to Labelbox schema", divider="grey")
# Your existing code to handle schema mapping...
# Fetch the first 5 rows of the selected table
with st.spinner('Fetching first 5 rows of the selected table...'):
query = f"SELECT * FROM {selected_database}.{selected_table} LIMIT 5;"
table_sample_data = execute_databricks_query(query, cluster_id, formatted_title, databricks_api_key)
st.write(table_sample_data)
# Define two columns for side-by-side selectboxes
col1, col2 = st.columns(2)
with col1:
selected_row_data = st.selectbox(
"row_data (required):",
column_names,
index=None,
placeholder="Select a column..",
help="Select the column that contains the URL/URI bucket location of the data rows you wish to import into Labelbox."
)
with col2:
selected_global_key = st.selectbox(
"global_key (optional):",
column_names,
index=None,
placeholder="Select a column..",
help="Select the column that contains the global key. If not provided, a new key will be generated for you."
)
# Fetch a single row from the selected table
query_sample_row = f"SELECT * FROM {selected_database}.{selected_table} LIMIT 1;"
result_sample = execute_databricks_query(query_sample_row, cluster_id, formatted_title, databricks_api_key)
if selected_row_data:
# Extract the value from the selected row_data column
sample_row_data_value = result_sample[selected_row_data].iloc[0]
# Validate the extracted value
dataset_id = create_new_dataset_labelbox(new_dataset_name) if create_new_dataset else dataset_id
# Mode
mode = "preview" if is_preview else "production"
# Databricks instance and API key
databricks_instance = formatted_title
databricks_api_key = databricks_api_key
# Dataset ID and New Dataset
new_dataset = 1 if create_new_dataset else 0
dataset_id = dataset_id
# Table Path
table_path = f"{selected_database}.{selected_table}"
# Frequency
frequency = frequency
# Schema Map
row_data_input = selected_row_data
global_key_input = selected_global_key
# Create the initial dictionary
schema_map_dict = {'row_data': row_data_input}
if global_key_input:
schema_map_dict['global_key'] = global_key_input
# Swap keys and values
reversed_schema_map_dict = {v: k for k, v in schema_map_dict.items()}
# Convert the reversed dictionary to a stringified JSON
reversed_schema_map_str = json.dumps(reversed_schema_map_dict)
data = {
"cloud": cloud,
"mode": mode,
"databricks_instance": databricks_instance,
"databricks_api_key": databricks_api_key,
"new_dataset": new_dataset,
"dataset_id": dataset_id,
"table_path": table_path,
"labelbox_api_key": labelbox_api_key,
"frequency": frequency,
"new_cluster": 0,
"cluster_id": cluster_id,
"schema_map": reversed_schema_map_str
}
if st.button("Deploy Pipeline!", type="primary"):
# Ensure all fields are filled out
required_fields = [
mode, databricks_instance, databricks_api_key, new_dataset, dataset_id,
table_path, labelbox_api_key, frequency, cluster_id, reversed_schema_map_str
]
# Sending a POST request to the Flask app endpoint
with st.spinner("Deploying pipeline..."):
response = requests.post("https://us-central1-dbt-prod.cloudfunctions.net/deploy-databricks-pipeline", json=data)
# Check if request was successful
if response.status_code == 200:
# Display the response using Streamlit
st.balloons()
response = response.json()
# Extract the job_id
job_id = response['message'].split('job_id":')[1].split('}')[0]
from urllib.parse import urlparse, parse_qs
# Parse the Databricks instance URL to extract the organization ID
parsed_url = urlparse(formatted_title)
query_params = parse_qs(parsed_url.query)
organization_id = query_params.get("o", [""])[0]
# Generate the Databricks Job URL
job_url = f"http://{formatted_title}/?o={organization_id}#job/{job_id}"
st.success(f"Pipeline deployed successfully! [{job_url}]({job_url}) π")
else:
st.error(f"Failed to deploy pipeline. Response: {response.text}", icon="π«")
st.markdown("""
<style>
/* Add a large bottom padding to the main content */
.main .block-container {
padding-bottom: 1000px; /* Adjust this value as needed */
}
</style>
""", unsafe_allow_html=True)
|