Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,48 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
-
import
|
4 |
-
from gradio import
|
|
|
5 |
|
|
|
6 |
generator = pipeline("text2text-generation", model="LahiruProjects/recipe-generator-flan-t5")
|
7 |
|
|
|
8 |
def generate_recipe(name, ingredients, calories, time):
|
9 |
prompt = f"""Create a step-by-step recipe for "{name}" using these ingredients: {', '.join(ingredients.split(','))}.
|
10 |
Keep it under {calories} calories and make sure it's ready in less than {time} minutes."""
|
11 |
result = generator(prompt)
|
12 |
return result[0]["generated_text"]
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
app =
|
26 |
-
app = gr_api.FastAPI(app, demo)
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from gradio import routes
|
5 |
+
import uvicorn
|
6 |
|
7 |
+
# Load the model (this runs only once!)
|
8 |
generator = pipeline("text2text-generation", model="LahiruProjects/recipe-generator-flan-t5")
|
9 |
|
10 |
+
# Function to generate recipe steps
|
11 |
def generate_recipe(name, ingredients, calories, time):
|
12 |
prompt = f"""Create a step-by-step recipe for "{name}" using these ingredients: {', '.join(ingredients.split(','))}.
|
13 |
Keep it under {calories} calories and make sure it's ready in less than {time} minutes."""
|
14 |
result = generator(prompt)
|
15 |
return result[0]["generated_text"]
|
16 |
|
17 |
+
# Gradio interface
|
18 |
+
iface = gr.Interface(
|
19 |
+
fn=generate_recipe,
|
20 |
+
inputs=[
|
21 |
+
gr.Textbox(label="Recipe Name"),
|
22 |
+
gr.Textbox(label="Ingredients (comma-separated)"),
|
23 |
+
gr.Number(label="Max Calories", value=400),
|
24 |
+
gr.Number(label="Max Cooking Time (minutes)", value=30)
|
25 |
+
],
|
26 |
+
outputs="text",
|
27 |
+
title="π³ Recipe Generator (FLAN-T5)",
|
28 |
+
description="Generate a step-by-step recipe based on ingredients, calorie limit, and time"
|
29 |
+
)
|
30 |
|
31 |
+
# FastAPI integration
|
32 |
+
app = FastAPI()
|
|
|
33 |
|
34 |
+
# Define the API route using Gradio interface
|
35 |
+
@app.post("/api/predict")
|
36 |
+
async def predict(data: list):
|
37 |
+
inputs = data[0]
|
38 |
+
name = inputs[0]
|
39 |
+
ingredients = inputs[1]
|
40 |
+
calories = inputs[2]
|
41 |
+
time = inputs[3]
|
42 |
+
result = generate_recipe(name, ingredients, calories, time)
|
43 |
+
return {"data": [result]}
|
44 |
|
45 |
+
# Serve the Gradio interface and FastAPI app using Uvicorn (locally for testing)
|
46 |
+
if __name__ == "__main__":
|
47 |
+
iface.launch(server_name="0.0.0.0", server_port=7860) # This will launch the Gradio app
|
48 |
+
uvicorn.run(app, host="0.0.0.0", port=8000) # FastAPI app will run on port 8000
|