Spaces:
Sleeping
Sleeping
File size: 1,305 Bytes
b6570ba 25f669d c88766e 56f67e5 b6570ba 34712d2 b6570ba 151a7d9 388d543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
from PIL import Image
yolov7_weights = hf_hub_download(repo_id="LailaMB/visual_pollution_detection", filename="best_640_rpoch56.pt")
model = torch.hub.load('WongKinYiu/yolov7:main', 'custom', "LailaMB/visual_pollution_detection/best_640_rpoch56.pt", force_reload=True) # local repo
def object_detection(im, size=640):
results = model(im) # inference
#results.print() # print results to screen
#results.show() # display results
#results.save() # save as results1.jpg, results2.jpg... etc.
results.render() # updates results.imgs with boxes and labels
return Image.fromarray(results.imgs[0])
title = "visual_pollution_detection"
description = """Esse modelo é uma pequena demonstração baseada em uma análise de cerca de 60 imagens somente. Para resultados mais confiáveis e genéricos, são necessários mais exemplos (imagens).
"""
image = gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Imagem", optional=False)
outputs = gr.outputs.Image(type="pil", label="Output Image")
gr.Interface(
fn=object_detection,
inputs=image,
outputs=outputs,
title=title,
description=description,
examples=[]
,cache_examples=False).launch()
|