File size: 1,382 Bytes
b6570ba
 
 
 
 
25f669d
c88766e
6925def
b6570ba
 
34712d2
b6570ba
 
 
 
 
 
c7069b3
b6570ba
 
 
b78b164
c2c8f22
 
 
 
 
1be024d
4ae902a
2f45e87
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
from PIL import Image

yolov7_weights = hf_hub_download(repo_id="LailaMB/visual_pollution_detection", filename="best_640_rpoch56.pt")

model = torch.hub.load('WongKinYiu/yolov7:main', 'custom', yolov7_weights, force_reload=True)  # local repo

def object_detection(im, size=640):
    results = model(im)  # inference
    #results.print() # print results to screen
    #results.show()  # display results
    #results.save()  # save as results1.jpg, results2.jpg... etc.
    results.render() # updates results.imgs with boxes and labels
    return Image.fromarray(results.imgs[0])


image = gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Imagem", optional=False)
outputs = gr.outputs.Image(type="pil", label="Output Image")


gr.Interface(
	fn=object_detection,
    inputs=image,
    outputs=outputs,
    title="Visual Pollution Detection",
    description="Demo for <a href='https://github.com/LailaMB/Smartathon_Visual_Pollution_Detection' style='text-decoration: underline' target='_blank'>Visual Pollution Detection Model</a>. The model which was developed by AICAS_KSU team to solve the Theme1 problem of the <a href='https://smartathon.hackerearth.com' style='text-decoration: underline' target='_blank'>Smartathon</a> .",
    examples=[],cache_examples=False).launch()