Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
REPO_ID = "LailaMB/pollution_detector" | |
FILENAME = "best_640_rpoch56.pt" | |
yolov7_weights = hf_hub_download(repo_id=REPO_ID, filename=FILENAME) | |
model = torch.hub.load('WongKinYiu/yolov7:main', 'custom', path=yolov7_weights, force_reload=True) # local repo | |
def object_detection(im, size=640): | |
results = model(im) # inference | |
#results.print() # print results to screen | |
#results.show() # display results | |
#results.save() # save as results1.jpg, results2.jpg... etc. | |
results.render() # updates results.imgs with boxes and labels | |
return Image.fromarray(results.imgs[0]) | |
title = "visual_pollution_detection" | |
description = """Esse modelo é uma pequena demonstração baseada em uma análise de cerca de 60 imagens somente. Para resultados mais confiáveis e genéricos, são necessários mais exemplos (imagens). | |
""" | |
image = gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Imagem", optional=False) | |
outputs = gr.outputs.Image(type="pil", label="Output Image") | |
gr.Interface( | |
fn=object_detection, | |
inputs=image, | |
outputs=outputs, | |
title=title, | |
description=description, | |
examples=[["sample_images/0a1ea4614a9df912eeb8d1b40bffee74.JPG"], ["sample_images/0a2bc0dc2371794509f4b776aff0dd88.JPG"], | |
["sample_images/0a4e0e88a05abd96670c8c0c3a67fc73.JPG"], ["sample_images/0a584ddb325ed1ab4083d341280caaa8.JPG"]] | |
,cache_examples=False).launch() | |