from transformers import VitsModel, AutoTokenizer import soundfile as sf import torch from datetime import datetime import random import time from ctransformers import AutoModelForCausalLM from datetime import datetime import whisper from transformers import VitsModel, AutoTokenizer import torch from transformers import MusicgenForConditionalGeneration, AutoProcessor, set_seed import torch import numpy as np import os import argparse import gradio as gr from timeit import default_timer as timer import torch import numpy as np import pandas as pd from huggingface_hub import hf_hub_download from model.bart import BartCaptionModel from utils.audio_utils import load_audio, STR_CH_FIRST from diffusers import DiffusionPipeline from PIL import Image def image_grid(imgs, rows, cols): assert len(imgs) == rows*cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols*w, rows*h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h)) return grid def save_to_txt(text_to_save): with open('prompt.txt', 'w', encoding='utf-8') as f: f.write(text_to_save) def read_txt(): with open('prompt.txt') as f: lines = f.readlines() return lines ##### Chat z LLAMA #### ##### Chat z LLAMA #### ##### Chat z LLAMA #### params = { "max_new_tokens":512, "stop":["" ,"<|endoftext|>","[", ""], "temperature":0.7, "top_p":0.8, "stream":True, "batch_size": 8} whisper_model = whisper.load_model("medium").to("cuda") print("Whisper Loaded!") llm = AutoModelForCausalLM.from_pretrained("Aspik101/trurl-2-7b-pl-instruct_GGML", model_type="llama") print("LLM Loaded!") tts_model = VitsModel.from_pretrained("facebook/mms-tts-pol") tts_model.to("cuda") print("TTS Loaded!") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-pol") pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda") print("DiffusionPipeline Loaded!") model_audio_gen = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small").to("cuda") processor_audio_gen = AutoProcessor.from_pretrained("facebook/musicgen-small") ##### Chat z LLAMA #### ##### Chat z LLAMA #### ##### Chat z LLAMA #### def _load_model_tokenizer(): model_id = 'tangger/Qwen-7B-Chat' tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",trust_remote_code=True, fp16=True).eval() return model, tokenizer model, tokenizer = _load_model_tokenizer() def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert(message), None if response is None else mdtex2html.convert(response), ) return y def _parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split("`") if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f"
" else: if i > 0: if count % 2 == 1: line = line.replace("`", r"\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
" + line text = "".join(lines) return text def predict(_query, _chatbot, _task_history): print(f"User: {_parse_text(_query)}") _chatbot.append((_parse_text(_query), "")) full_response = "" for response in model.chat_stream(tokenizer, _query, history=_task_history,system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku poslkim" ): _chatbot[-1] = (_parse_text(_query), _parse_text(response)) yield _chatbot full_response = _parse_text(response) print(f"History: {_task_history}") _task_history.append((_query, full_response)) print(f"Qwen-7B-Chat: {_parse_text(full_response)}") def read_text(text): print("___Tekst do przeczytania!") inputs = tokenizer_tss(text, return_tensors="pt").to("cuda") with torch.no_grad(): output = tts_model(**inputs).waveform.squeeze().cpu().numpy() sf.write('temp_file.wav', output, tts_model.config.sampling_rate) return 'temp_file.wav' def update_audio(text): return 'temp_file.wav' def translate(audio): print("__Wysyłam nagranie do whisper!") transcription = whisper_model.transcribe(audio, language="pl") return transcription["text"] def predict(audio, _chatbot, _task_history): # Użyj funkcji translate, aby przekształcić audio w tekst _query = translate(audio) print(f"____User: {_parse_text(_query)}") _chatbot.append((_parse_text(_query), "")) full_response = "" for response in model.chat_stream(tokenizer, _query, history= _task_history, system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku polskim. Odpowiadaj krótko."): _chatbot[-1] = (_parse_text(_query), _parse_text(response)) yield _chatbot full_response = _parse_text(response) print(f"____History: {_task_history}") _task_history.append((_query, full_response)) print(f"__Qwen-7B-Chat: {_parse_text(full_response)}") print("____full_response",full_response) audio_file = read_text(_parse_text(full_response)) # Generowanie audio return full_response # return 'temp_file.wav' # Zwrócenie ścieżki do pliku audio def regenerate(_chatbot, _task_history): if not _task_history: yield _chatbot return item = _task_history.pop(-1) _chatbot.pop(-1) yield from predict(item[0], _chatbot, _task_history) with gr.Blocks() as chat_demo: chatbot = gr.Chatbot(label='Llama Voice Chatbot', elem_classes="control-height") query = gr.Textbox(lines=2, label='Input') task_history = gr.State([]) audio_output = gr.Audio('temp_file.wav', label="Generated Audio (wav)", type='filepath', autoplay=False) with gr.Row(): submit_btn = gr.Button("🚀 Wyślij tekst") with gr.Row(): audio_upload = gr.Audio(source="microphone", type="filepath", show_label=False) submit_audio_btn = gr.Button("🎙️ Wyślij audio") submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True) submit_audio_btn.click(predict, [audio_upload, chatbot, task_history], [chatbot], show_progress=True).then(update_audio, chatbot, audio_output) chat_demo.queue().launch(share=False) ##### Audio Gen #### ##### Audio Gen #### ##### Audio Gen #### sampling_rate = model_audio_gen.audio_encoder.config.sampling_rate frame_rate = model_audio_gen.audio_encoder.config.frame_rate text_encoder = model_audio_gen.get_text_encoder() def generate_audio(decade, genre, instrument, guidance_scale=8, audio_length_in_s=20, seed=0): prompt = " ".join([decade, genre, 'track with ', instrument]) save_to_txt(prompt) inputs = processor_audio_gen( text=[prompt, "drums"], padding=True, return_tensors="pt", ).to(device) with torch.no_grad(): encoder_outputs = text_encoder(**inputs) max_new_tokens = int(frame_rate * audio_length_in_s) set_seed(seed) audio_values = model_audio_gen.generate(inputs.input_ids[0][None, :], attention_mask=inputs.attention_mask, encoder_outputs=encoder_outputs, do_sample=True, guidance_scale=guidance_scale, max_new_tokens=max_new_tokens) sf.write('generated_audio.wav', audio_values.cpu()[0][0], 32_000) audio_values = (audio_values.cpu().numpy() * 32767).astype(np.int16) return (sampling_rate, audio_values) audio_gen = gr.Interface( fn=generate_audio, inputs=[ # gr.Text(label="Negative prompt", value="drums"), gr.Radio(["50s", " 60s", "70s", "80s", "90s"], label="decade", info=""), gr.Radio(["classic", "rock", "pop", "metal", "jazz", "synth"], label="genre", info=""), gr.Radio(["acoustic guitar", "electric guitar", "drums", "saxophone", "keyboard", "accordion", "fiddle"], label="instrument", info=""), gr.Slider(1.5, 10, value=8, step=0.5, label="Guidance scale"), gr.Slider(5, 30, value=20, step=5, label="Audio length in s"), # gr.Slider(0, 10, value=0, step=1, label="Seed"), ], outputs=[ gr.Audio(label="Generated Music", type="numpy"), ]#, # examples=EXAMPLES, ) #### Audio desc and Stable ### #### Audio desc and Stable ### #### Audio desc and Stable ### if os.path.isfile("transfer.pth") == False: torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/transfer.pth', 'transfer.pth') torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/folk.wav', 'folk.wav') torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/electronic.mp3', 'electronic.mp3') torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/orchestra.wav', 'orchestra.wav') device = "cuda:0" if torch.cuda.is_available() else "cpu" example_list = ['folk.wav', 'electronic.mp3', 'orchestra.wav'] model = BartCaptionModel(max_length = 128) pretrained_object = torch.load('./transfer.pth', map_location='cpu') state_dict = pretrained_object['state_dict'] model.load_state_dict(state_dict) if torch.cuda.is_available(): torch.cuda.set_device(device) model = model.cuda(device) model.eval() def get_audio(audio_path, duration=10, target_sr=16000): n_samples = int(duration * target_sr) audio, sr = load_audio( path= audio_path, ch_format= STR_CH_FIRST, sample_rate= target_sr, downmix_to_mono= True, ) if len(audio.shape) == 2: audio = audio.mean(0, False) # to mono input_size = int(n_samples) if audio.shape[-1] < input_size: # pad sequence pad = np.zeros(input_size) pad[: audio.shape[-1]] = audio audio = pad ceil = int(audio.shape[-1] // n_samples) audio = torch.from_numpy(np.stack(np.split(audio[:ceil * n_samples], ceil)).astype('float32')) return audio def captioning(audio_path): audio_tensor = get_audio(audio_path = audio_path) if torch.cuda.is_available(): audio_tensor = audio_tensor.to(device) with torch.no_grad(): output = model.generate( samples=audio_tensor, num_beams=5, ) inference = "" number_of_chunks = range(audio_tensor.shape[0]) for chunk, text in zip(number_of_chunks, output): time = f"[{chunk * 10}:00-{(chunk + 1) * 10}:00]" inference += f"{time}\n{text} \n \n" return inference title = "" description = "" article = "" def captioning(): audio_path = 'generated_audio.wav' audio_tensor = get_audio(audio_path=audio_path) if torch.cuda.is_available(): audio_tensor = audio_tensor.to(device) with torch.no_grad(): output = model.generate( samples=audio_tensor, num_beams=5) inference = "" number_of_chunks = range(audio_tensor.shape[0]) for chunk, text in zip(number_of_chunks, output): time = f"[{chunk * 10}:00-{(chunk + 1) * 10}:00]" inference += f"{time}\n{text} \n \n" prompt = read_txt() print(prompt[0]) # Generuj obraz na podstawie tekstu #generated_images = pipe(prompt=prompt[0]*5 + inference + prompt[0]*5).images #image = generated_images[0] num_images = 3 prompt = [prompt[0]*5 + inference + prompt[0]*5] * num_images images = pipe(prompt, height=768, width=768).images grid = image_grid(images, rows=1, cols=3) return inference, grid audio_desc = gr.Interface(fn=captioning, inputs=None, outputs=[ gr.Textbox(label="Caption generated by LP-MusicCaps Transfer Model"), gr.Image(label="Generated Image") # Dodane wyjście dla obrazu ], title=title, description=description, article=article, cache_examples=False ) music = gr.Video("muzyka_AI.mp4") voice_cloning = gr.Video("voice_cloning_fraud.mp4") ##### Run Alll ####### ##### Run Alll ####### ##### Run Alll ####### demo_all = gr.TabbedInterface([music, audio_gen, audio_desc, voice_cloning, chat_demo], ["1.Music", "2.Audio Generation", "3.Image Generation", "4.Voice Cloning", "5.Chat with LLama"]) demo_all.queue() demo_all.launch()