import gradio as gr from gen_ai import traditional_model,llm_model # Functions that return class instances def function_a(query): return traditional_model().predict(query) def function_b(query): return llm_model(query) # Function to handle user input def handle_query(function_choice, query): function_map = { "FinBERT": function_a, "Dolly Finetuned": function_b, } if function_choice in function_map: result = function_map[function_choice](query) return result.response else: return "Invalid selection." # Gradio Interface iface = gr.Interface( fn=handle_query, inputs=[ gr.Radio(["FinBERT", "Dolly Finetuned"], label="Select Function"), gr.Textbox(label="Enter Query") ], outputs=gr.Textbox(label="Response"), title="Function Selector", description="Select a function, enter a query, and get a response.", # Adding footer details article=""" **About this application:** This tool allows users to select a function, input a query, and get a response based on the selected function. Developed using Gradio. """ ) iface.launch()