from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch model_path = "finetuned_model_backup" # Move the model to the appropriate device (GPU if available) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Set the model to evaluation mode label_dict = { "bank_service": 0, "credit_card": 1, "credit_reporting": 2, "debt_collection": 3, "loan": 4, "money_transfers": 5, "mortgage": 6 } class traditional_model: def __init__(self): self.model = AutoModelForSequenceClassification.from_pretrained(model_path) self.tokenizer = AutoTokenizer.from_pretrained(model_path) def predict(self,query): self.model.to(device) self.model.eval() inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True).to(device) # Move input to device with torch.no_grad(): outputs = self.model(**inputs) predicted_class = torch.argmax(outputs.logits, dim=1).item() prediction = list(label_dict.keys())[predicted_class] return prediction class llm_model: def __init__(self, query): self.response = f"Result from Function B for query: {query}" class ResultC: def __init__(self, query): self.response = f"Result from Function C for query: {query}"