Spaces:
Sleeping
Sleeping
Lalit Mahale
commited on
Commit
·
db92763
unverified
·
0
Parent(s):
Add files via upload
Browse files- app.py +31 -0
- config.py +8 -0
- prompt.py +14 -0
- requirements.txt +5 -0
- utils.py +109 -0
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from utils import Chain
|
3 |
+
from utils import DB
|
4 |
+
st.set_page_config(page_title="💬 Chat_to_DB")
|
5 |
+
|
6 |
+
# st.title(":red[Chat] to :red[Database]")
|
7 |
+
st.markdown("<h1 style='text-align: center;'>Chat to Database</h1>", unsafe_allow_html=True)
|
8 |
+
|
9 |
+
st.sidebar.subheader("See table")
|
10 |
+
row = st.sidebar.number_input("Enter Number of rows", min_value=5,step=1)
|
11 |
+
st.sidebar.write(DB().see_table(rows = row))
|
12 |
+
|
13 |
+
if "messages" not in st.session_state.keys():
|
14 |
+
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
15 |
+
|
16 |
+
for message in st.session_state.messages:
|
17 |
+
with st.chat_message(message["role"]):
|
18 |
+
st.write(message["content"])
|
19 |
+
|
20 |
+
if prompt := st.chat_input():
|
21 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
22 |
+
with st.chat_message("user"):
|
23 |
+
st.write(prompt)
|
24 |
+
|
25 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
26 |
+
with st.chat_message("assistant"):
|
27 |
+
with st.spinner("Thinking..."):
|
28 |
+
response = Chain().final_sql(prompt)
|
29 |
+
st.write(response)
|
30 |
+
message = {"role": "assistant", "content": response}
|
31 |
+
st.session_state.messages.append(message)
|
config.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
db_configuration = {"USER" : '',
|
2 |
+
"PASSWORD" : "",
|
3 |
+
"PORT" : "",
|
4 |
+
"DB" : "",
|
5 |
+
"HOST" :""
|
6 |
+
}
|
7 |
+
|
8 |
+
API_KEY = ''
|
prompt.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
def get_response():
|
4 |
+
return """
|
5 |
+
You are a nice chatbot who have nice converstion with human.
|
6 |
+
You have to understand user question and database response and give the proper, easy to understand.\n\n
|
7 |
+
user_query : {question}\n\n
|
8 |
+
database_response : {db_res}
|
9 |
+
|
10 |
+
Last converstion :
|
11 |
+
{last_conversion}
|
12 |
+
|
13 |
+
Response:
|
14 |
+
"""
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain-google-genai
|
2 |
+
streamlit
|
3 |
+
python-dotenv
|
4 |
+
pandas
|
5 |
+
sqlalchemy
|
utils.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain_google_genai import GoogleGenerativeAI
|
3 |
+
from langchain_community.utilities import SQLDatabase
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from config import db_configuration, API_KEY
|
6 |
+
from prompt import get_response
|
7 |
+
from langchain_experimental.sql.base import SQLDatabaseSequentialChain
|
8 |
+
from langchain.chains import create_sql_query_chain
|
9 |
+
from langchain_core.prompts import PromptTemplate
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.chains import LLMChain
|
12 |
+
import pandas as pd
|
13 |
+
from sqlalchemy import create_engine
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
class DB:
|
18 |
+
def __init__(self):
|
19 |
+
self.host = db_configuration["HOST"]
|
20 |
+
self.password = db_configuration["PASSWORD"]
|
21 |
+
self.database = db_configuration["DB"]
|
22 |
+
self.port = db_configuration["PORT"]
|
23 |
+
self.user = db_configuration["USER"]
|
24 |
+
|
25 |
+
def db_conn(self):
|
26 |
+
url = f"""mysql://{self.user}:{self.password}@{self.host}:{self.port}/{self.database}?"""
|
27 |
+
return SQLDatabase.from_uri(url)
|
28 |
+
|
29 |
+
def see_table(self,rows):
|
30 |
+
url = f"""mysql://{self.user}:{self.password}@{self.host}:{self.port}/{self.database}?"""
|
31 |
+
conn = create_engine(url)
|
32 |
+
df = pd.read_sql_query(f"select * from cars_details limit {rows};",con=conn,index_col="id")
|
33 |
+
return df
|
34 |
+
|
35 |
+
|
36 |
+
class LLM_conn:
|
37 |
+
def __init__(self) -> None:
|
38 |
+
self.temparature = 0
|
39 |
+
self.model = "gemini-pro"
|
40 |
+
|
41 |
+
def llm(self):
|
42 |
+
return GoogleGenerativeAI(google_api_key=API_KEY, model=self.model,temperature=self.temparature)
|
43 |
+
|
44 |
+
|
45 |
+
class Chain:
|
46 |
+
def __init__(self) -> None:
|
47 |
+
self.description = DB().db_conn().run("DESC cars_details;")
|
48 |
+
self.db = DB().db_conn()
|
49 |
+
self.llm = LLM_conn().llm()
|
50 |
+
self.memory = ConversationBufferMemory(memory_key="chat_history")
|
51 |
+
|
52 |
+
def clean_sql_query(self,query):
|
53 |
+
return query.replace("sql","").replace("```","").replace("\n"," ").strip()
|
54 |
+
|
55 |
+
def sql_chain(self,query):
|
56 |
+
chain = create_sql_query_chain(self.llm, self.db)
|
57 |
+
res = chain.invoke({"question":query,"table_info":self.description})
|
58 |
+
res = self.clean_sql_query(res)
|
59 |
+
return res
|
60 |
+
|
61 |
+
def final_sql(self,query):
|
62 |
+
sql_q = self.sql_chain(query=query)
|
63 |
+
f_sql = self.db.run(sql_q)
|
64 |
+
llm_res = self.llm.invoke(get_response().format(question = query, db_res = f_sql))
|
65 |
+
return llm_res
|
66 |
+
|
67 |
+
def memory_base_chain(self, question):
|
68 |
+
# Assuming self.sql_chain and self.db.run are defined and work correctly
|
69 |
+
sql_q = self.sql_chain(query=question)
|
70 |
+
f_sql = self.db.run(sql_q)
|
71 |
+
|
72 |
+
template = f"""
|
73 |
+
You are a nice chatbot who has nice conversation with humans.
|
74 |
+
You have to understand user question and database response and give the proper, easy to understand.\n\n
|
75 |
+
user_query : {question}
|
76 |
+
database_response : {f_sql}
|
77 |
+
Last conversation :
|
78 |
+
{{chat_history}}
|
79 |
+
|
80 |
+
Response:
|
81 |
+
"""
|
82 |
+
|
83 |
+
# You may need to fetch chat_history from self.memory or another source
|
84 |
+
|
85 |
+
# Format the prompt template with actual values
|
86 |
+
# prompt = template.format(Question=question, db_res=f_sql, chat_history="") # Provide chat_history if available
|
87 |
+
|
88 |
+
formatted_prompt = PromptTemplate.format_prompt(template)
|
89 |
+
|
90 |
+
conversation = LLMChain(llm=self.llm, prompt=formatted_prompt, memory=self.memory)
|
91 |
+
|
92 |
+
res = conversation({"Question": question, "db_res": f_sql})
|
93 |
+
|
94 |
+
print(res)
|
95 |
+
return res
|
96 |
+
|
97 |
+
if __name__ =="__main__":
|
98 |
+
# db = DB()
|
99 |
+
# db_conn = db.db_conn()
|
100 |
+
# print(db_conn.run("desc cars_details;"))
|
101 |
+
# llm_conn = LLM_conn()
|
102 |
+
# llm = llm_conn.llm()
|
103 |
+
# print(llm.invoke("hi"))
|
104 |
+
# res = chain.sql_chain(query="give me name and price of most selling 3 cars")
|
105 |
+
# print(res)
|
106 |
+
# print("\n\n\n")
|
107 |
+
query = input("Enter :")
|
108 |
+
final = Chain().memory_base_chain(question= query)
|
109 |
+
print(final)
|