from langchain_google_genai import GoogleGenerativeAI | |
import requests | |
from bs4 import BeautifulSoup | |
from dotenv import load_dotenv | |
import os | |
load_dotenv() | |
class RAG: | |
def __init__(self): | |
self.url = 'https://lalitmahale.github.io' | |
self.llm = GoogleGenerativeAI(google_api_key=os.getenv("GOOGLE_API"),model="gemini-1.5-pro") | |
def get_data(self): | |
try: | |
res = requests.get(self.url) | |
soup = BeautifulSoup(res.content, "html.parser") | |
return soup.get_text() | |
except Exception as e: | |
print(e) | |
def clean_text(self): | |
return self.get_data().replace("\n","") | |
def prompt(self): | |
return """You are a helpfull assistant for me and Your name is lalit mahale. understand the below context and give answer for user question. | |
context : {context}\n\nQuestion : {question}\n\nGive proper answer for this questions.""" | |
def pipeline(self,query): | |
try: | |
prompt = self.prompt().format(context = self.clean_text(),question = query) | |
return self.llm.invoke(prompt) | |
except Exception as e: | |
print(e) | |
if __name__ == "__main__": | |
res = RAG().pipeline("who is lalit mahale") | |
print(res) |