|
from sentence_transformers import SentenceTransformer |
|
|
|
class GetEmbedding: |
|
def __init__(self,data:list): |
|
self.data = data |
|
def user_query_emb(self,model_name:str = 'paraphrase-MiniLM-L6-v2'): |
|
try: |
|
model = SentenceTransformer(model_name_or_path=model_name) |
|
embedding = model.encode(self.data) |
|
return embedding |
|
except Exception as e: |
|
print(e) |
|
|
|
def convert_data(self,model_name:str = 'paraphrase-MiniLM-L6-v2'): |
|
try: |
|
model = SentenceTransformer(model_name) |
|
embeddings = model.encode(self.data) |
|
return embeddings |
|
except Exception as e: |
|
print(e) |
|
|
|
if __name__ == "__main__": |
|
emb = GetEmbedding("lalit") |
|
print( emb) |