|
from langchain_google_genai import GoogleGenerativeAI |
|
import requests |
|
from bs4 import BeautifulSoup |
|
from dotenv import load_dotenv |
|
import os |
|
load_dotenv() |
|
|
|
|
|
class RAG: |
|
def __init__(self): |
|
self.url = 'https://lalitmahale.github.io' |
|
self.llm = GoogleGenerativeAI(google_api_key=os.getenv("GOOGLE_API"),model="gemini-pro") |
|
|
|
|
|
def get_data(self): |
|
try: |
|
res = requests.get(self.url) |
|
soup = BeautifulSoup(res.content, "html.parser") |
|
return soup.get_text() |
|
except Exception as e: |
|
print(e) |
|
|
|
def clean_text(self): |
|
return self.get_data().replace("\n","") |
|
|
|
def prompt(self): |
|
return """You are a helpfull assistant for me and Your name is lalit mahale. understand the below context and give answer for user question. |
|
|
|
context : {context}\n\nQuestion : {question}\n\nGive proper answer for this questions.""" |
|
|
|
|
|
def pipeline(self,query): |
|
try: |
|
prompt = self.prompt().format(context = self.clean_text(),question = query) |
|
return self.llm.invoke(prompt) |
|
except Exception as e: |
|
print(e) |
|
|
|
|
|
if __name__ == "__main__": |
|
res = RAG().pipeline("who is lalit mahale") |
|
print(res) |