LalitMahale
commited on
Commit
·
3b0a769
1
Parent(s):
642a8cb
modified
Browse files- app.py +11 -9
- main.py +56 -56
- utils/vector_store.py +47 -47
app.py
CHANGED
@@ -4,7 +4,7 @@ from deep_translator import GoogleTranslator
|
|
4 |
from fastapi.responses import JSONResponse
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
import os
|
7 |
-
from main import process,audio_process
|
8 |
from dotenv import load_dotenv
|
9 |
import base64
|
10 |
from pathlib import Path
|
@@ -46,25 +46,27 @@ async def home():
|
|
46 |
|
47 |
# Token verification function
|
48 |
def verify_token(token: str):
|
|
|
49 |
if token != os.getenv("TOKEN"):
|
50 |
raise HTTPException(status_code=401, detail="Token not matched")
|
51 |
|
52 |
# Translate endpoint that accepts a query parameter 'text'
|
53 |
-
@app.get("/translate")
|
54 |
-
async def translate(text: str = "", token: str = ""):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
|
63 |
|
64 |
@app.post("/chatbot")
|
65 |
async def chatbot(req:ChatBot):
|
66 |
query = req.text
|
67 |
token = req.token
|
|
|
68 |
if not query or not token:
|
69 |
raise HTTPException(status_code=400, detail="No text provided")
|
70 |
verify_token(token=token)
|
|
|
4 |
from fastapi.responses import JSONResponse
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
import os
|
7 |
+
# from main import process,audio_process
|
8 |
from dotenv import load_dotenv
|
9 |
import base64
|
10 |
from pathlib import Path
|
|
|
46 |
|
47 |
# Token verification function
|
48 |
def verify_token(token: str):
|
49 |
+
print("token: ",token)
|
50 |
if token != os.getenv("TOKEN"):
|
51 |
raise HTTPException(status_code=401, detail="Token not matched")
|
52 |
|
53 |
# Translate endpoint that accepts a query parameter 'text'
|
54 |
+
# @app.get("/translate")
|
55 |
+
# async def translate(text: str = "", token: str = ""):
|
56 |
+
# if not text or not token:
|
57 |
+
# raise HTTPException(status_code=400, detail="No text or token provided")
|
58 |
+
# verify_token(token)
|
59 |
+
# translator = GoogleTranslator(source="auto", target="mr")
|
60 |
+
# result = translator.translate(text)
|
61 |
|
62 |
+
# return {"result": result}
|
63 |
|
64 |
|
65 |
@app.post("/chatbot")
|
66 |
async def chatbot(req:ChatBot):
|
67 |
query = req.text
|
68 |
token = req.token
|
69 |
+
print("query : ",query)
|
70 |
if not query or not token:
|
71 |
raise HTTPException(status_code=400, detail="No text provided")
|
72 |
verify_token(token=token)
|
main.py
CHANGED
@@ -1,58 +1,58 @@
|
|
1 |
-
import numpy as np
|
2 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
3 |
-
from utils.convert_embedding import GetEmbedding
|
4 |
-
import random
|
5 |
-
import pickle
|
6 |
-
import os
|
7 |
-
from utils.rag import RAG
|
8 |
-
from faster_whisper import WhisperModel
|
9 |
-
|
10 |
-
|
11 |
-
def process(user_query:str):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
def audio_process(audio):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
if __name__ == "__main__":
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
1 |
+
# import numpy as np
|
2 |
+
# from sklearn.metrics.pairwise import cosine_similarity
|
3 |
+
# from utils.convert_embedding import GetEmbedding
|
4 |
+
# import random
|
5 |
+
# import pickle
|
6 |
+
# import os
|
7 |
+
# from utils.rag import RAG
|
8 |
+
# from faster_whisper import WhisperModel
|
9 |
+
|
10 |
+
|
11 |
+
# def process(user_query:str):
|
12 |
+
# # dump_user_question(user_query)
|
13 |
+
# user_embedding = GetEmbedding([user_query]).user_query_emb()
|
14 |
+
# with open(r"all_mix_embedding.pkl","rb") as f:
|
15 |
+
# load_embedding = pickle.load(f)
|
16 |
+
|
17 |
+
# with open(r"all_answers.pkl","rb") as f:
|
18 |
+
# ans = pickle.load(f)
|
19 |
+
# similarity_scores = cosine_similarity(user_embedding, load_embedding)
|
20 |
+
# index = np.argmax(similarity_scores)
|
21 |
+
# answer = ans[index]
|
22 |
+
# score = similarity_scores[0,index]
|
23 |
+
# print(f"Index : {index}:\tscore:{score} \tquery: {user_query}")
|
24 |
+
|
25 |
+
# if float(score) > 0.60 :
|
26 |
+
# final_output = random.choice(answer)
|
27 |
+
# else:
|
28 |
+
# final_output = RAG().pipeline(query=user_query)
|
29 |
+
|
30 |
+
# return final_output
|
31 |
+
|
32 |
+
|
33 |
+
# def audio_process(audio):
|
34 |
+
# try:
|
35 |
+
# model = WhisperModel(model_size_or_path="medium.en")
|
36 |
+
# segments, info = model.transcribe(audio)
|
37 |
+
# transcription = " ".join([seg.text for seg in segments])
|
38 |
+
# result = process(user_query=transcription)
|
39 |
+
# return result
|
40 |
+
# except Exception as e:
|
41 |
+
# print("Error:", e)
|
42 |
+
# return str(e)
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
# if __name__ == "__main__":
|
48 |
+
# res = audio_process(r"C:\Users\lalit\Documents\Sound recordings\who_is_lalit.m4a")
|
49 |
+
# print(res)
|
50 |
+
# # for _ in range(3):
|
51 |
|
52 |
+
# # user = input("How can i help you :? \n")
|
53 |
+
# # result = process(user)
|
54 |
+
# # print(result)
|
55 |
|
56 |
+
# # with open(r"data\question_data.pkl","rb") as f:
|
57 |
+
# # que = pickle.load(f)
|
58 |
+
# # print(que)
|
utils/vector_store.py
CHANGED
@@ -1,50 +1,50 @@
|
|
1 |
-
from faiss import IndexFlatL2,write_index,read_index
|
2 |
-
import numpy as np
|
3 |
-
from utils.convert_embedding import GetEmbedding
|
4 |
-
|
5 |
-
|
6 |
-
class VectorStore:
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
|
50 |
|
|
|
1 |
+
# from faiss import IndexFlatL2,write_index,read_index
|
2 |
+
# import numpy as np
|
3 |
+
# from utils.convert_embedding import GetEmbedding
|
4 |
+
|
5 |
+
|
6 |
+
# class VectorStore:
|
7 |
+
# def __init__(self):
|
8 |
+
# pass
|
9 |
+
|
10 |
+
# def store_vectors(self,data:list,embedding_space_name:str = 'faiss_index.index',numpy_emb_space:str = 'embeddings.npy' ):
|
11 |
+
# try:
|
12 |
+
# embeddings = GetEmbedding(data=data).convert_emb()
|
13 |
+
# diamension = embeddings.shape[1]
|
14 |
+
# print("Diamension",diamension)
|
15 |
+
# # Create L2 distance index
|
16 |
+
# index = IndexFlatL2(diamension)
|
17 |
+
|
18 |
+
# index.add(embeddings)
|
19 |
+
|
20 |
+
# write_index(index, embedding_space_name)
|
21 |
+
|
22 |
+
# # Save embeddings to file
|
23 |
+
# np.save(numpy_emb_space, embeddings)
|
24 |
+
# return True
|
25 |
+
# except Exception as e:
|
26 |
+
# print(e)
|
27 |
+
# return False
|
28 |
+
|
29 |
+
# def get_similary_search(self,query,embedding_space_name:str = 'faiss_index.index',numpy_emb_space:str = 'embeddings.npy',K:int= 1):
|
30 |
+
# # Load the FAISS index
|
31 |
+
# index = read_index('faiss_index.index')
|
32 |
+
|
33 |
+
# # Load the embeddings
|
34 |
+
# embeddings_np = np.load('embeddings.npy')
|
35 |
+
|
36 |
+
# # Now you can perform similarity searches on the index
|
37 |
+
# query = "What is photosynthesis?"
|
38 |
+
# query_embedding = GetEmbedding([query]).convert_emb()
|
39 |
+
# query_embedding = query_embedding.detach().numpy()
|
40 |
+
# # query_embedding = np.array(query_embedding) # Convert to numpy array
|
41 |
+
# # query_embedding = query_embedding.reshape(1, -1)
|
42 |
+
# # print("shape")
|
43 |
+
# # print(query_embedding.shape)
|
44 |
+
# # Perform search
|
45 |
+
# distances, indices = index.search(query_embedding, k = K)
|
46 |
+
|
47 |
+
# return indices
|
48 |
|
49 |
|
50 |
|