LalitMahale
commited on
Commit
·
ba1cae1
1
Parent(s):
f2e2bb3
gemini added
Browse files- .env +1 -0
- main.py +3 -3
- utils/rag.py +42 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Google_api = 'AIzaSyB3wI2r6ZgQnYQ3V39PX5S0zWSRqy5ldYw'
|
main.py
CHANGED
@@ -4,7 +4,7 @@ from utils.convert_embedding import GetEmbedding
|
|
4 |
import random
|
5 |
import pickle
|
6 |
import os
|
7 |
-
|
8 |
|
9 |
|
10 |
# def dump_user_question(query):
|
@@ -35,10 +35,10 @@ def process(user_query:str):
|
|
35 |
score = similarity_scores[0,index]
|
36 |
print(f"Index : {index}:\tscore:{score} \tquery: {user_query}")
|
37 |
|
38 |
-
if float(score) > 0.
|
39 |
final_output = random.choice(answer)
|
40 |
else:
|
41 |
-
final_output =
|
42 |
|
43 |
return final_output
|
44 |
|
|
|
4 |
import random
|
5 |
import pickle
|
6 |
import os
|
7 |
+
from utils.rag import RAG
|
8 |
|
9 |
|
10 |
# def dump_user_question(query):
|
|
|
35 |
score = similarity_scores[0,index]
|
36 |
print(f"Index : {index}:\tscore:{score} \tquery: {user_query}")
|
37 |
|
38 |
+
if float(score) > 0.60 :
|
39 |
final_output = random.choice(answer)
|
40 |
else:
|
41 |
+
final_output = RAG().pipeline(query=user_query)
|
42 |
|
43 |
return final_output
|
44 |
|
utils/rag.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_google_genai import GoogleGenerativeAI
|
2 |
+
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import os
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
|
9 |
+
class RAG:
|
10 |
+
def __init__(self):
|
11 |
+
self.url = 'https://lalitmahale.github.io'
|
12 |
+
self.llm = GoogleGenerativeAI(google_api_key=os.getenv("Google_api"),model="gemini-pro")
|
13 |
+
|
14 |
+
|
15 |
+
def get_data(self):
|
16 |
+
try:
|
17 |
+
res = requests.get(self.url)
|
18 |
+
soup = BeautifulSoup(res.content, "html.parser")
|
19 |
+
return soup.get_text()
|
20 |
+
except Exception as e:
|
21 |
+
print(e)
|
22 |
+
|
23 |
+
def clean_text(self):
|
24 |
+
return self.get_data().replace("\n","")
|
25 |
+
|
26 |
+
def prompt(self):
|
27 |
+
return """You are a helpfull assistant for me. understand the below context and give answer for user question.
|
28 |
+
|
29 |
+
context : {context}\n\nQuestion : {question}\n\nGive proper answer for this questions."""
|
30 |
+
|
31 |
+
|
32 |
+
def pipeline(self,query):
|
33 |
+
try:
|
34 |
+
prompt = self.prompt().format(context = self.clean_text(),question = query)
|
35 |
+
return self.llm.invoke(prompt)
|
36 |
+
except Exception as e:
|
37 |
+
print(e)
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
res = RAG().pipeline("who is lalit mahale")
|
42 |
+
print(res)
|