# from sentence_transformers import SentenceTransformer # class GetEmbedding: # def __init__(self,data:list): # self.data = data # def user_query_emb(self,model_name:str = 'paraphrase-MiniLM-L6-v2'): # try: # model = SentenceTransformer(model_name_or_path=model_name) # embedding = model.encode(self.data) # return embedding # except Exception as e: # print(e) # def convert_data(self,model_name:str = 'paraphrase-MiniLM-L6-v2'): # try: # model = SentenceTransformer(model_name) # embeddings = model.encode(self.data) # return embeddings # except Exception as e: # print(e) # if __name__ == "__main__": # emb = GetEmbedding("lalit") # print( emb)