import numpy as np from sklearn.metrics.pairwise import cosine_similarity from utils.convert_embedding import GetEmbedding import random import pickle import os # def dump_user_question(query): # try: # if os.path.exists: # with open(r"data\question_data.pkl","rb") as f: # que = pickle.load(f) # else: # que = [] # que.append(query) # with open(r"data\question_data.pkl","wb") as f: # que = pickle.dump(que,f) # except: # with open(r"data\question_data.pkl","wb") as f: # pickle.dump([],f) def process(user_query:str): # dump_user_question(user_query) user_embedding = GetEmbedding([user_query]).user_query_emb() with open(r"all_mix_embedding.pkl","rb") as f: load_embedding = pickle.load(f) with open(r"all_answers.pkl","rb") as f: ans = pickle.load(f) similarity_scores = cosine_similarity(user_embedding, load_embedding) index = np.argmax(similarity_scores) answer = ans[index] print(f"{index}:\t {user_query}") score = similarity_scores[0,index] if score > 50 : final_output = random.choice(answer) else: final_output = "Sorry, I didn't understand." return final_output if __name__ == "__main__": pass # for _ in range(3): # user = input("How can i help you :? \n") # result = process(user) # print(result) # with open(r"data\question_data.pkl","rb") as f: # que = pickle.load(f) # print(que)