import numpy as np from sklearn.metrics.pairwise import cosine_similarity from utils.convert_embedding import GetEmbedding import random import pickle import os from utils.rag import RAG from faster_whisper import WhisperModel def process(user_query:str): # dump_user_question(user_query) user_embedding = GetEmbedding([user_query]).user_query_emb() with open(r"all_mix_embedding.pkl","rb") as f: load_embedding = pickle.load(f) with open(r"all_answers.pkl","rb") as f: ans = pickle.load(f) similarity_scores = cosine_similarity(user_embedding, load_embedding) index = np.argmax(similarity_scores) answer = ans[index] score = similarity_scores[0,index] print(f"Index : {index}:\tscore:{score} \tquery: {user_query}") if float(score) > 0.60 : final_output = random.choice(answer) else: final_output = RAG().pipeline(query=user_query) return final_output def audio_process(audio): try: model = WhisperModel(model_size_or_path="medium.en") segments, info = model.transcribe(audio) transcription = " ".join([seg.text for seg in segments]) result = process(user_query=transcription) return result except Exception as e: print("Error:", e) return str(e) if __name__ == "__main__": res = audio_process(r"C:\Users\lalit\Documents\Sound recordings\who_is_lalit.m4a") print(res) # for _ in range(3): # user = input("How can i help you :? \n") # result = process(user) # print(result) # with open(r"data\question_data.pkl","rb") as f: # que = pickle.load(f) # print(que)