from sentence_transformers import SentenceTransformer class GetEmbedding: def __init__(self,data:list): self.data = data def user_query_emb(self,model_name:str = 'paraphrase-MiniLM-L6-v2'): try: model = SentenceTransformer(model_name_or_path=model_name) embedding = model.encode(self.data) return embedding except Exception as e: print(e) def convert_data(self,model_name:str = 'paraphrase-MiniLM-L6-v2'): try: model = SentenceTransformer(model_name) embeddings = model.encode(self.data) return embeddings except Exception as e: print(e) if __name__ == "__main__": emb = GetEmbedding("lalit") print( emb)