from faiss import IndexFlatL2,write_index,read_index import numpy as np from utils.convert_embedding import GetEmbedding class VectorStore: def __init__(self): pass def store_vectors(self,data:list,embedding_space_name:str = 'faiss_index.index',numpy_emb_space:str = 'embeddings.npy' ): try: embeddings = GetEmbedding(data=data).convert_emb() diamension = embeddings.shape[1] print("Diamension",diamension) # Create L2 distance index index = IndexFlatL2(diamension) index.add(embeddings) write_index(index, embedding_space_name) # Save embeddings to file np.save(numpy_emb_space, embeddings) return True except Exception as e: print(e) return False def get_similary_search(self,query,embedding_space_name:str = 'faiss_index.index',numpy_emb_space:str = 'embeddings.npy',K:int= 1): # Load the FAISS index index = read_index('faiss_index.index') # Load the embeddings embeddings_np = np.load('embeddings.npy') # Now you can perform similarity searches on the index query = "What is photosynthesis?" query_embedding = GetEmbedding([query]).convert_emb() query_embedding = query_embedding.detach().numpy() # query_embedding = np.array(query_embedding) # Convert to numpy array # query_embedding = query_embedding.reshape(1, -1) # print("shape") # print(query_embedding.shape) # Perform search distances, indices = index.search(query_embedding, k = K) return indices