LamaAl commited on
Commit
4435ac4
·
1 Parent(s): 8475b59

Upload ml.py

Browse files
Files changed (1) hide show
  1. ml.py +30 -0
ml.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ train = pd.read_csv('train_ctrUa4K.csv')
4
+ train.head()
5
+ train['Gender']= train['Gender'].map({'Male':0, 'Female':1})
6
+ train['Married']= train['Married'].map({'No':0, 'Yes':1})
7
+ train['Loan_Status']= train['Loan_Status'].map({'N':0, 'Y':1})
8
+ train.isnull().sum()
9
+ train = train.dropna()
10
+ train.isnull().sum()
11
+ X = train[['Gender', 'Married', 'ApplicantIncome', 'LoanAmount', 'Credit_History']]
12
+ y = train.Loan_Status
13
+ X.shape, y.shape
14
+ from sklearn.model_selection import train_test_split
15
+ x_train, x_cv, y_train, y_cv = train_test_split(X,y, test_size = 0.2, random_state = 10)
16
+
17
+ from sklearn.ensemble import RandomForestClassifier
18
+ model = RandomForestClassifier(max_depth=4, random_state = 10)
19
+ model.fit(x_train, y_train)
20
+ from sklearn.metrics import accuracy_score
21
+ pred_cv = model.predict(x_cv)
22
+ accuracy_score(y_cv,pred_cv)
23
+ pred_train = model.predict(x_train)
24
+ accuracy_score(y_train,pred_train)
25
+ pred_train = model.predict(x_train)
26
+ accuracy_score(y_train,pred_train)
27
+ import pickle5
28
+ pickle_out = open("classifier.pkl", mode = "wb")
29
+ pickle5.dump(model, pickle_out)
30
+ pickle_out.close()