LamaAl commited on
Commit
0e09d23
·
1 Parent(s): 3fbc8ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -38
app.py CHANGED
@@ -1,39 +1,45 @@
1
  import streamlit as st
2
- from streamlit_chat import message as st_message
3
- from transformers import BlenderbotTokenizer
4
- from transformers import BlenderbotForConditionalGeneration
5
-
6
-
7
- @st.experimental_singleton
8
- def get_models():
9
- # it may be necessary for other frameworks to cache the model
10
- # seems pytorch keeps an internal state of the conversation
11
- model_name = "facebook/blenderbot-400M-distill"
12
- tokenizer = BlenderbotTokenizer.from_pretrained(model_name)
13
- model = BlenderbotForConditionalGeneration.from_pretrained(model_name)
14
- return tokenizer, model
15
-
16
-
17
- if "history" not in st.session_state:
18
- st.session_state.history = []
19
-
20
- st.title("Hello Chatbot")
21
-
22
-
23
- def generate_answer():
24
- tokenizer, model = get_models()
25
- user_message = st.session_state.input_text
26
- inputs = tokenizer(st.session_state.input_text, return_tensors="pt")
27
- result = model.generate(**inputs)
28
- message_bot = tokenizer.decode(
29
- result[0], skip_special_tokens=True
30
- ) # .replace("<s>", "").replace("</s>", "")
31
-
32
- st.session_state.history.append({"message": user_message, "is_user": True})
33
- st.session_state.history.append({"message": message_bot, "is_user": False})
34
-
35
-
36
- st.text_input("Talk to the bot", key="input_text", on_change=generate_answer)
37
-
38
- for chat in st.session_state.history:
39
- st_message(**chat) # unpacking
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import transformers
3
+ import gradio as gr
4
+ import git
5
+
6
+ #Load arabert preprocessor
7
+ import git
8
+ git.Git("arabert").clone("https://github.com/aub-mind/arabert")
9
+ from arabert.preprocess import ArabertPreprocessor
10
+ arabert_prep = ArabertPreprocessor(model_name="bert-base-arabert", keep_emojis=False)
11
+
12
+
13
+ #Load Model
14
+ from transformers import EncoderDecoderModel, AutoTokenizer
15
+ tokenizer = AutoTokenizer.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
16
+ model = EncoderDecoderModel.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
17
+ model.eval()
18
+
19
+ def generate_response(text, minimum_length, k, p, temperature):
20
+ text_clean = arabert_prep.preprocess(text)
21
+ inputs = tokenizer.encode_plus(text_clean,return_tensors='pt')
22
+ outputs = model.generate(input_ids = inputs.input_ids,
23
+ attention_mask = inputs.attention_mask,
24
+ do_sample = True,
25
+ min_length=minimum_length,
26
+ top_k = k,
27
+ top_p = p,
28
+ temperature = temperature)
29
+ preds = tokenizer.batch_decode(outputs)
30
+ response = str(preds)
31
+ response = response.replace("\'", '')
32
+ response = response.replace("[[CLS]", '')
33
+ response = response.replace("[SEP]]", '')
34
+ response = str(arabert_prep.desegment(response))
35
+ return response
36
+
37
+ gr.Interface(fn=generate_response,
38
+ inputs=[
39
+ gr.inputs.Textbox(),
40
+ gr.inputs.Slider(5, 20, step=1, label='Minimum Output Length'),
41
+ gr.inputs.Slider(0, 1000, step=10, label='Top-K'),
42
+ gr.inputs.Slider(0, 1, step=0.1, label='Top-P'),
43
+ gr.inputs.Slider(0, 3, step=0.1, label='Temperature'),
44
+ ],
45
+ outputs="text").launch()