Spaces:
Runtime error
Runtime error
File size: 10,894 Bytes
364ca9d 682c690 364ca9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from sklearn.metrics import confusion_matrix
import os
import cv2
import numpy as np
from tqdm import tqdm
from flask import jsonify, flash, redirect, url_for
from pathlib import Path
from get_load_data import GetLoadData
from data_preprocess import DataProcessing
list_folder = ['Training', 'Testing']
class TrainPred:
def __init__(self, batch_size=32):
self.batch_size = batch_size
self.list_class = ['Diamond', 'Oblong', 'Oval', 'Round', 'Square', 'Triangle']
self.face_crop_img = True
self.face_landmark_img = True
self.landmark_extraction_img = True
self.prepro_img = 0
self.prepro_img2 = 0
self.name = ""
self.progres = 0
self.data_processor = DataProcessing()
def train_model(self, model, train_generator, test_generator, epoch):
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_generator, epochs=epoch, validation_data=test_generator)
return history
def prediction(self, model):
img_width, img_height = 200, 200
img = load_img("./static/result_upload2.jpg", target_size=(img_width, img_height))
# img = load_img("./static/result_upload2.jpg")
img = img_to_array(img)
img = img/255.0
img = np.expand_dims(img, axis=0)
pred = model.predict(img)
pred_2 = model.predict_on_batch(img)
print(f"Pred :{pred}")
print(f"Pred 2 : {pred_2}")
# menghitung softmax
softmax_pred = np.exp(pred) / np.sum(np.exp(pred), axis=1, keepdims=True)
max_value = int(round(np.max(softmax_pred * 100)))
pred = np.argmax(pred, axis=1)
# Map the label
pred = [self.list_class[k] for k in pred]
return pred, max_value
def plot_accuracy(self, result, epoch):
train_acc_gr = result.history['accuracy']
val_acc_gr = result.history['val_accuracy']
epochs = range(1, epoch+1)
# Plot training accuracy
plt.plot(epochs, train_acc_gr, label='Training Accuracy')
plt.plot(epochs, val_acc_gr, label='Testing Accuracy')
# Set plot title and labels
plt.title('Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='best')
# Save plot as image file
plt.savefig('./static/accuracy_plot.png')
def plot_loss(self, result, epoch):
train_loss_gr = result.history['loss']
val_loss_gr = result.history['val_loss']
epochs = range(1, epoch+1)
# Plot training accuracy
plt.plot(epochs, train_loss_gr, label='Training Loss')
plt.plot(epochs, val_loss_gr, label='Testing Loss')
# Set plot title and labels
plt.title('Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(loc='best')
# Save plot as image file
plt.savefig('./static/loss_plot.png')
def plot_confusion_matrix(self, model, test_generator):
# Get the predictions from the model
predictions = model.predict(test_generator, steps=len(test_generator), verbose=1)
y_pred = np.argmax(predictions, axis=1)
y_true = test_generator.classes
# Generate confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Plot the confusion matrix
fig, ax = plt.subplots(figsize=(8, 8))
ax.imshow(cm, cmap='Blues')
ax.set_title('Confusion Matrix')
ax.set_xlabel('Predicted Labels')
ax.set_ylabel('True Labels')
ax.set_xticks(range(len(test_generator.class_indices)))
ax.set_xticklabels(test_generator.class_indices.keys(), rotation=90)
ax.set_yticks(range(len(test_generator.class_indices)))
ax.set_yticklabels(test_generator.class_indices.keys())
for i in range(len(test_generator.class_indices)):
for j in range(len(test_generator.class_indices)):
ax.text(j, i, str(cm[i, j]), ha='center', va='center', color='white')
fig.tight_layout()
filename = './static/confusion_matrix.png'
# Save the confusion matrix as an image file
fig.savefig(filename)
return filename
def data_configuration(self, train_image_df, test_image_df):
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_dataframe(
dataframe=train_image_df,
x_col='Filepath',
y_col='Label',
target_size=(220, 280),
color_mode='rgb',
class_mode='categorical',
batch_size=self.batch_size,
subset='training'
)
test_generator = test_datagen.flow_from_dataframe(
dataframe=test_image_df,
x_col='Filepath',
y_col='Label',
target_size=(220, 280),
color_mode='rgb',
class_mode='categorical',
batch_size=self.batch_size,
subset='training'
)
return train_generator, test_generator
def model_architecture(self):
model = tf.keras.models.Sequential()
# layers from the previous code
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=(220, 280, 3)))
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu'))
model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu'))
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(6, activation='softmax'))
model.summary()
return model
# @staticmethod
def do_pre1(self,test):
global prepro_img
global face_landmark_img, landmark_extraction_img
self.prepro_img = 0
try:
if (self.face_landmark_img == True):
GetLoadData.folder_maker("Face Landmark")
for i in tqdm(range(0, len(list_folder)), desc=f"Processing {list_folder} images"):
for j in range(0, len(self.list_class)):
dataset = f"./static/dataset/Face Shape/{list_folder[i]}/{self.list_class[j]}"
len_dataset = os.listdir(f"./static/dataset/Face Shape/{list_folder[i]}/{self.list_class[j]}")
image_dir = Path(dataset)
for k in (range(0, len(len_dataset))):
filepaths, labels = GetLoadData.load_image_data(image_dir)
img = cv2.imread(filepaths[k])
img = self.data_processor.annotate_face_mesh(image=img)
# print("./static/dataset/Face Landmark/" + f"{list_folder[i]}/" + f"{list_class[j]}/" + f"{len_dataset[k]}")
cv2.imwrite(
"./static/dataset/Face Landmark/" + f"{list_folder[i]}/" + f"{self.list_class[j]}/" + f"{len_dataset[k]}",
img)
self.prepro_img += 1
return jsonify({'message': 'Preprocessing 1 sukses'}), 200
except Exception as e:
flash('Terjadi error: {}'.format(str(e)))
return redirect(url_for('index'))
def do_pre2(self,test):
global prepro_img2
global face_landmark_img, landmark_extraction_img
self.prepro_img2 = 0
try:
if (self.landmark_extraction_img == True):
GetLoadData.folder_maker("Landmark Extraction")
for i2 in tqdm(range(0, len(list_folder)), desc=f"Processing {list_folder} images"):
for j2 in range(0, len(self.list_class)):
new_dataset = f"./static/dataset/Face Landmark/{list_folder[i2]}/{self.list_class[j2]}"
len_new_dataset = os.listdir(
f"./static/dataset/Face Landmark/{list_folder[i2]}/{self.list_class[j2]}")
image_dir = Path(new_dataset)
for k in (range(0, len(len_new_dataset))):
filepaths, labels = GetLoadData.load_image_data(image_dir)
img = cv2.imread(filepaths[k])
subtracted_img = np.zeros(img.shape, np.uint8)
# ----------------------------------------------------------------------
img1 = cv2.imread(
f'./static/dataset/Face Landmark/{list_folder[i2]}/{self.list_class[j2]}/{len_new_dataset[k]}')
img2 = cv2.imread(
f'./static/dataset/Face Shape/{list_folder[i2]}/{self.list_class[j2]}/{len_new_dataset[k]}')
# Lakukan perhitungan pengurangan pixel secara manual
for l in range(img1.shape[0]):
for m in range(img1.shape[1]):
subtracted_img[l, m] = abs(int(img1[l, m][0]) - int(img2[l, m][0]))
# ----------------------------------------------------------------------
cv2.imwrite(
"./static/dataset/Landmark Extraction/" + f"{list_folder[i2]}/" + f"{self.list_class[j2]}/" + f"{len_new_dataset[k]}",
subtracted_img)
self.prepro_img2 += 1
# requests.get(url_for('get_progress_1', _external=True), params={'progress': prepro_img2})
# prepro_img = 0
# code preprocessing
return jsonify({'message': 'Preprocessing sukses'}), 200
except Exception as e:
flash('Terjadi error: {}'.format(str(e)))
return redirect(url_for('index'))
def get_progress_1(self):
if self.prepro_img > 0:
self.name = "Face Landmark"
self.progres = self.prepro_img
print(self.progres)
if self.prepro_img2 > 0:
self.name = "Landmark Extraction"
self.progres = self.prepro_img2
print(self.progres)
return self.progres, self.name
|