Test-Space / main.py
Lambang
test
f848d35
raw
history blame
11.6 kB
from fastapi import FastAPI
import pickle
import uvicorn
import pandas as pd
import shutil
import cv2
import tensorflow as tf
import os
from flask import Flask, jsonify, request, flash, redirect, url_for
from pyngrok import ngrok
from fastapi import FastAPI, HTTPException, File, UploadFile, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import JSONResponse
from file_processing import FileProcess
from get_load_data import GetLoadData
from data_preprocess import DataProcessing
from train_pred import TrainPred
app = FastAPI()
public_url = "https://lambang0902-test-space.hf.space"
app.mount("/static", StaticFiles(directory="static"), name="static")
#-----------------------------------------------------
# Tempat deklarasi variabel-variabel penting
filepath = ""
list_class = ['Diamond','Oblong','Oval','Round','Square','Triangle']
list_folder = ['Training', 'Testing']
recommendation = HairstyleRecommendation()
face_crop_img = True
face_landmark_img = True
landmark_extraction_img = True
#-----------------------------------------------------
#-----------------------------------------------------
# Tempat deklarasi model dan sejenisnya
selected_model = tf.keras.models.load_model(f'models/fc_model_1.h5', compile=False)
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
# #-----------------------------------------------------
# #-----------------------------------------------------
# Tempat setting server
UPLOAD_FOLDER = './upload'
UPLOAD_MODEL = './models'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg','zip','h5'}
# app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# app.config['UPLOAD_MODEL'] = UPLOAD_MODEL
# app.config['MAX_CONTENT_LENGTH'] = 500 * 1024 * 1024 # 500 MB
# #-----------------------------------------------------
#
from file_processing import FileProcess
from get_load_data import GetLoadData
from data_preprocess import DataProcessing
from train_pred import TrainPred
#-----------------------------------------------------
data_processor = DataProcessing()
data_train_pred = TrainPred()
import random
def preprocessing(filepath):
folder_path = './static/temporary'
shutil.rmtree(folder_path)
os.mkdir(folder_path)
data_processor.detect_landmark(data_processor.face_cropping_pred(filepath))
# data_processor.enhance_contrast_histeq(data_processor.face_cropping_pred(filepath))
files = os.listdir(folder_path)
index = 0
for file_name in files:
file_ext = os.path.splitext(file_name)[1]
new_file_name = str(index) + "_" + str(random.randint(1, 100000)) + file_ext
os.rename(os.path.join(folder_path, file_name), os.path.join(folder_path, new_file_name))
index += 1
print("Tungu sampai selesaiii")
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
#-----------------------------------------------------
# Fungsi untuk menjalankan ngrok
def run_ngrok():
try:
# Jalankan ngrok dan simpan prosesnya
ngrok_process = subprocess.Popen(['ngrok', 'http', '8000'])
return ngrok_process
except Exception as e:
print(f"Error running ngrok: {e}")
@app.get("/")
async def root():
# Dapatkan URL publik dari ngrok
ngrok_url = "Tidak Ada URL Publik (ngrok belum selesai memulai)"
try:
ngrok_url = subprocess.check_output(['ngrok', 'http', '8000']).decode('utf-8').strip()
except Exception as e:
print(f"Error getting ngrok URL: {e}")
return {"message": "Hello, World!", "ngrok_url": ngrok_url}
# -------------------------------------------------------------------------
# API UNTUK MELAKUKAN PROSES PREDIKSI
# -------------------------------------------------------------------------
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("image-classification", model="rizvandwiki/gender-classification-2")
@app.post('/upload/file',tags=["Predicting"])
async def upload_file(picture: UploadFile):
file_extension = picture.filename.split('.')[-1].lower()
if file_extension not in ALLOWED_EXTENSIONS:
raise HTTPException(status_code=400, detail='Invalid file extension')
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
file_path = os.path.join(UPLOAD_FOLDER, secure_filename(picture.filename))
with open(file_path, 'wb') as f:
f.write(picture.file.read())
try:
preprocessing(cv2.imread(file_path))
except Exception as e:
os.remove(file_path)
raise HTTPException(status_code=500, detail=f'Error processing image: {str(e)}')
return JSONResponse(content={'message': 'File successfully uploaded'}, status_code=200)
@app.get('/get_images', tags=["Predicting"])
def get_images():
folder_path = "./static/temporary"
files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
urls = []
# Image preprocessed url
for i in range(0, 3):
url = f'{public_url}/static/temporary/{files[i]}'
urls.append(url)
# Face shape classification
bentuk, persentase = data_train_pred.prediction(selected_model)
# Gender classification
gender_classify = pipe('./static/result_upload0.jpg')
output_gender = max(gender_classify, key=lambda x: x['score'])['label']
# Hairstyle recommendation
recommended_styles, style_images = recommendation.get_recommendation(output_gender, bentuk[0])
hairstyleImage = [f'{public_url}/static/hairstyle_image/{file}' for file in style_images]
response = {'urls': urls,
'bentuk_wajah': bentuk[0],
'persen': persentase,
'gender': output_gender,
'hair_style': recommended_styles,
'hair_image': hairstyleImage}
return response
# -------------------------------------------------------------------------
# API UNTUK MELAKUKAN PROSES TRAINING
# -------------------------------------------------------------------------
# Model pydantic untuk validasi body
class TrainingParams(BaseModel):
optimizer: str
epoch: int
batchSize: int
@app.post('/upload/dataset', tags=["Training"])
async def upload_data(dataset: UploadFile):
if dataset.filename == '':
raise HTTPException(status_code=400, detail='No file selected for uploading')
# Buat path lengkap untuk menyimpan file
file_path = os.path.join(UPLOAD_FOLDER, dataset.filename)
# Simpan file ke folder yang ditentukan
with open(file_path, "wb") as file_object:
file_object.write(dataset.file.read())
# Panggil fungsi untuk mengekstrak file jika perlu
FileProcess.extract_zip(file_path)
return {'message': 'File successfully uploaded'}
@app.post('/set_params', tags=["Training"])
async def set_params(request: Request, params: TrainingParams):
global optimizer, epoch, batch_size
optimizer = params.optimizer
epoch = params.epoch
batch_size = params.batchSize
response = {'message': 'Set parameter sukses'}
return response
@app.get('/get_info_data', tags=["Training"])
def get_info_prepro():
global optimizer, epoch, batch_size
training_counts = GetLoadData.get_training_file_counts().json
testing_counts = GetLoadData.get_testing_file_counts().json
response = {
"optimizer": optimizer,
"epoch": epoch,
"batch_size": batch_size,
"training_counts": training_counts,
"testing_counts": testing_counts
}
return response
@app.get('/get_images_preprocess', tags=["Training"])
def get_random_images_crop():
images_face_landmark = GetLoadData.get_random_images(tahap="Face Landmark",public_url=public_url)
images_face_extraction = GetLoadData.get_random_images(tahap="landmark Extraction", public_url=public_url)
response = {
"face_landmark": images_face_landmark,
"landmark_extraction": images_face_extraction
}
return response
@app.get('/do_preprocessing', tags=["Training"])
async def do_preprocessing():
try:
data_train_pred.do_pre1(test="")
data_train_pred.do_pre2(test="")
return {'message': 'Preprocessing sukses'}
except Exception as e:
# Tangani kesalahan dan kembalikan respons kesalahan
error_message = f'Error during preprocessing: {str(e)}'
raise HTTPException(status_code=500, detail=error_message)
@app.get('/do_training', tags=["Training"])
def do_training():
global epoch
folder = ""
if (face_landmark_img == True and landmark_extraction_img == True):
folder = "Landmark Extraction"
elif (face_landmark_img == True and landmark_extraction_img == False):
folder = "Face Landmark"
# --------------------------------------------------------------
train_dataset_path = f"./static/dataset/{folder}/Training/"
test_dataset_path = f"./static/dataset/{folder}/Testing/"
train_image_df, test_image_df = GetLoadData.load_image_dataset(train_dataset_path, test_dataset_path)
train_gen, test_gen = data_train_pred.data_configuration(train_image_df, test_image_df)
model = data_train_pred.model_architecture()
result = data_train_pred.train_model(model, train_gen, test_gen, epoch)
# Mengambil nilai akurasi training dan validation dari objek result
train_acc = result.history['accuracy'][-1]
val_acc = result.history['val_accuracy'][-1]
# Plot accuracy
data_train_pred.plot_accuracy(result=result, epoch=epoch)
acc_url = f'{public_url}/static/accuracy_plot.png'
# Plot loss
data_train_pred.plot_loss(result=result, epoch=epoch)
loss_url = f'{public_url}/static/loss_plot.png'
# Confusion Matrix
data_train_pred.plot_confusion_matrix(model, test_gen)
conf_url = f'{public_url}/static/confusion_matrix.png'
return jsonify({'train_acc': train_acc, 'val_acc': val_acc, 'plot_acc': acc_url, 'plot_loss':loss_url,'conf':conf_url})
# -------------------------------------------------------------------------
# API UNTUK PEMILIHAN MODEL
# -------------------------------------------------------------------------
@app.post('/upload/model', tags=["Model"])
def upload_model():
if 'file' not in request.files:
return {'message': 'No file part in the request'}, 400
file = request.files['file']
if file.filename == '':
return {'message': 'No file selected for uploading'}, 400
if file and FileProcess.allowed_file(file.filename):
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_MODEL'], filename)
file.save(filepath)
return {'message': 'File successfully uploaded'}
return {'message': 'File failed to uploaded'}
@app.post('/selected_models')
def select_models(index: int):
global selected_model
try:
global selected_model
selected_model = tf.keras.models.load_model(f'models/fc_model_{index}.h5')
# Lakukan sesuatu dengan indeks yang diterima
return {'message': 'Request berhasil diterima'}
except Exception as e:
raise HTTPException(status_code=500, detail=f'Error: {str(e)}')
if __name__ == '__main__':
import uvicorn
public_url = ngrok.connect(8080).public_url
print(f' * Running on {public_url}')
uvicorn.run(app, host="0.0.0.0", port=8080)
# app = FastAPI()