Spaces:
Runtime error
Runtime error
Lambang
commited on
Commit
·
2c2434b
1
Parent(s):
364ca9d
cek
Browse files
main.py
CHANGED
@@ -2,9 +2,57 @@ from fastapi import FastAPI
|
|
2 |
import pickle
|
3 |
import uvicorn
|
4 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
app = FastAPI()
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
#Endpoints
|
9 |
#Root endpoints
|
10 |
@app.get("/")
|
@@ -13,5 +61,179 @@ async def root():
|
|
13 |
ngrok_url = "Tidak Ada URL Publik (ngrok belum selesai memulai)"
|
14 |
|
15 |
return {"message": "Hello, World!", "ngrok_url": ngrok_url}
|
16 |
-
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import pickle
|
3 |
import uvicorn
|
4 |
import pandas as pd
|
5 |
+
import shutil
|
6 |
+
import cv2
|
7 |
+
import mediapipe as mp
|
8 |
+
from werkzeug.utils import secure_filename
|
9 |
+
import tensorflow as tf
|
10 |
+
import os
|
11 |
+
from flask import Flask, jsonify, request, flash, redirect, url_for
|
12 |
+
from pyngrok import ngrok
|
13 |
+
from fastapi import FastAPI, HTTPException, File, UploadFile, Request
|
14 |
+
from fastapi.staticfiles import StaticFiles
|
15 |
+
from fastapi.responses import JSONResponse
|
16 |
+
from pydantic import BaseModel
|
17 |
+
import subprocess
|
18 |
+
|
19 |
+
from file_processing import FileProcess
|
20 |
+
from get_load_data import GetLoadData
|
21 |
+
from data_preprocess import DataProcessing
|
22 |
+
from train_pred import TrainPred
|
23 |
|
24 |
app = FastAPI()
|
25 |
+
public_url = "https://lambang0902-test-space.hf.space"
|
26 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
27 |
+
# Tempat deklarasi variabel-variabel penting
|
28 |
+
filepath = ""
|
29 |
+
list_class = ['Diamond','Oblong','Oval','Round','Square','Triangle']
|
30 |
+
list_folder = ['Training', 'Testing']
|
31 |
+
face_crop_img = True
|
32 |
+
face_landmark_img = True
|
33 |
+
landmark_extraction_img = True
|
34 |
+
# #-----------------------------------------------------
|
35 |
+
#
|
36 |
+
#
|
37 |
+
# #-----------------------------------------------------
|
38 |
+
# Tempat deklarasi model dan sejenisnya
|
39 |
+
selected_model = tf.keras.models.load_model(f'models/fc_model_1.h5', compile=False)
|
40 |
+
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
|
41 |
+
mp_drawing = mp.solutions.drawing_utils
|
42 |
+
mp_face_mesh = mp.solutions.face_mesh
|
43 |
+
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
|
44 |
+
# #-----------------------------------------------------
|
45 |
+
#
|
46 |
+
#
|
47 |
+
# #-----------------------------------------------------
|
48 |
+
# Tempat setting server
|
49 |
+
UPLOAD_FOLDER = './upload'
|
50 |
+
UPLOAD_MODEL = './models'
|
51 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg','zip','h5'}
|
52 |
+
# app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
53 |
+
# app.config['UPLOAD_MODEL'] = UPLOAD_MODEL
|
54 |
+
# app.config['MAX_CONTENT_LENGTH'] = 500 * 1024 * 1024 # 500 MB
|
55 |
+
# #-----------------------------------------------------
|
56 |
#Endpoints
|
57 |
#Root endpoints
|
58 |
@app.get("/")
|
|
|
61 |
ngrok_url = "Tidak Ada URL Publik (ngrok belum selesai memulai)"
|
62 |
|
63 |
return {"message": "Hello, World!", "ngrok_url": ngrok_url}
|
|
|
64 |
|
65 |
+
|
66 |
+
# #-----------------------------------------------------
|
67 |
+
#
|
68 |
+
data_processor = DataProcessing()
|
69 |
+
data_train_pred = TrainPred()
|
70 |
+
#
|
71 |
+
import random
|
72 |
+
def preprocessing(filepath):
|
73 |
+
folder_path = './static/temporary'
|
74 |
+
|
75 |
+
shutil.rmtree(folder_path)
|
76 |
+
os.mkdir(folder_path)
|
77 |
+
|
78 |
+
# data_processor.detect_landmark(data_processor.face_cropping_pred(filepath))
|
79 |
+
data_processor.enhance_contrast_histeq(data_processor.face_cropping_pred(filepath))
|
80 |
+
|
81 |
+
files = os.listdir(folder_path)
|
82 |
+
index = 0
|
83 |
+
for file_name in files:
|
84 |
+
file_ext = os.path.splitext(file_name)[1]
|
85 |
+
new_file_name = str(index) + "_" + str(random.randint(1, 100000)) + file_ext
|
86 |
+
os.rename(os.path.join(folder_path, file_name), os.path.join(folder_path, new_file_name))
|
87 |
+
index += 1
|
88 |
+
|
89 |
+
print("Tungu sampai selesaiii")
|
90 |
+
|
91 |
+
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
|
92 |
+
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
|
93 |
+
|
94 |
+
## -------------------------------------------------------------------------
|
95 |
+
## API UNTUK MELAKUKAN PROSES PREDIKSI
|
96 |
+
## -------------------------------------------------------------------------
|
97 |
+
|
98 |
+
@app.post('/upload/file',tags=["Predicting"])
|
99 |
+
async def upload_file(picture: UploadFile):
|
100 |
+
file_extension = picture.filename.split('.')[-1].lower()
|
101 |
+
|
102 |
+
|
103 |
+
if file_extension not in ALLOWED_EXTENSIONS:
|
104 |
+
raise HTTPException(status_code=400, detail='Invalid file extension')
|
105 |
+
|
106 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
107 |
+
file_path = os.path.join(UPLOAD_FOLDER, secure_filename(picture.filename))
|
108 |
+
with open(file_path, 'wb') as f:
|
109 |
+
f.write(picture.file.read())
|
110 |
+
try:
|
111 |
+
processed_img = preprocessing(cv2.imread(file_path))
|
112 |
+
except Exception as e:
|
113 |
+
os.remove(file_path)
|
114 |
+
raise HTTPException(status_code=500, detail=f'Error processing image: {str(e)}')
|
115 |
+
|
116 |
+
return JSONResponse(content={'message': 'File successfully uploaded'}, status_code=200)
|
117 |
+
|
118 |
+
@app.get('/get_images', tags=["Predicting"])
|
119 |
+
def get_images():
|
120 |
+
folder_path = "./static/temporary"
|
121 |
+
files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
|
122 |
+
urls = []
|
123 |
+
for i in range(0, 3):
|
124 |
+
url = f'{public_url}/static/temporary/{files[i]}'
|
125 |
+
urls.append(url)
|
126 |
+
bentuk, persentase = data_train_pred.prediction(selected_model)
|
127 |
+
return {'urls': urls, 'bentuk_wajah':bentuk[0], 'persen':persentase}
|
128 |
+
|
129 |
+
|
130 |
+
## -------------------------------------------------------------------------
|
131 |
+
## API UNTUK MELAKUKAN PROSES TRAINING
|
132 |
+
## -------------------------------------------------------------------------
|
133 |
+
|
134 |
+
# Model pydantic untuk validasi body
|
135 |
+
class TrainingParams(BaseModel):
|
136 |
+
optimizer: str
|
137 |
+
epoch: int
|
138 |
+
batchSize: int
|
139 |
+
|
140 |
+
@app.post('/upload/dataset', tags=["Training"])
|
141 |
+
async def upload_data(dataset: UploadFile):
|
142 |
+
if dataset.filename == '':
|
143 |
+
raise HTTPException(status_code=400, detail='No file selected for uploading')
|
144 |
+
|
145 |
+
# Buat path lengkap untuk menyimpan file
|
146 |
+
file_path = os.path.join(UPLOAD_FOLDER, dataset.filename)
|
147 |
+
|
148 |
+
# Simpan file ke folder yang ditentukan
|
149 |
+
with open(file_path, "wb") as file_object:
|
150 |
+
file_object.write(dataset.file.read())
|
151 |
+
|
152 |
+
# Panggil fungsi untuk mengekstrak file jika perlu
|
153 |
+
FileProcess.extract_zip(file_path)
|
154 |
+
|
155 |
+
return {'message': 'File successfully uploaded'}
|
156 |
+
|
157 |
+
@app.post('/set_params', tags=["Training"])
|
158 |
+
async def set_params(request: Request, params: TrainingParams):
|
159 |
+
global optimizer, epoch, batch_size
|
160 |
+
|
161 |
+
optimizer = params.optimizer
|
162 |
+
epoch = params.epoch
|
163 |
+
batch_size = params.batchSize
|
164 |
+
|
165 |
+
response = {'message': 'Set parameter sukses'}
|
166 |
+
return response
|
167 |
+
|
168 |
+
@app.get('/get_info_data', tags=["Training"])
|
169 |
+
def get_info_prepro():
|
170 |
+
global optimizer, epoch, batch_size
|
171 |
+
training_counts = GetLoadData.get_training_file_counts().json
|
172 |
+
testing_counts = GetLoadData.get_testing_file_counts().json
|
173 |
+
response = {
|
174 |
+
"optimizer": optimizer,
|
175 |
+
"epoch": epoch,
|
176 |
+
"batch_size": batch_size,
|
177 |
+
"training_counts": training_counts,
|
178 |
+
"testing_counts": testing_counts
|
179 |
+
}
|
180 |
+
return response
|
181 |
+
|
182 |
+
@app.get('/get_images_preprocess', tags=["Training"])
|
183 |
+
def get_random_images_crop():
|
184 |
+
images_face_landmark = GetLoadData.get_random_images(tahap="Face Landmark",public_url=public_url)
|
185 |
+
images_face_extraction = GetLoadData.get_random_images(tahap="landmark Extraction", public_url=public_url)
|
186 |
+
|
187 |
+
response = {
|
188 |
+
"face_landmark": images_face_landmark,
|
189 |
+
"landmark_extraction": images_face_extraction
|
190 |
+
}
|
191 |
+
return response
|
192 |
+
|
193 |
+
@app.get('/do_preprocessing', tags=["Training"])
|
194 |
+
async def do_preprocessing():
|
195 |
+
try:
|
196 |
+
data_train_pred.do_pre1(test="")
|
197 |
+
data_train_pred.do_pre2(test="")
|
198 |
+
return {'message': 'Preprocessing sukses'}
|
199 |
+
except Exception as e:
|
200 |
+
# Tangani kesalahan dan kembalikan respons kesalahan
|
201 |
+
error_message = f'Error during preprocessing: {str(e)}'
|
202 |
+
raise HTTPException(status_code=500, detail=error_message)
|
203 |
+
|
204 |
+
@app.get('/do_training', tags=["Training"])
|
205 |
+
def do_training():
|
206 |
+
global epoch
|
207 |
+
folder = ""
|
208 |
+
if (face_landmark_img == True and landmark_extraction_img == True):
|
209 |
+
folder = "Landmark Extraction"
|
210 |
+
elif (face_landmark_img == True and landmark_extraction_img == False):
|
211 |
+
folder = "Face Landmark"
|
212 |
+
# --------------------------------------------------------------
|
213 |
+
train_dataset_path = f"./static/dataset/{folder}/Training/"
|
214 |
+
test_dataset_path = f"./static/dataset/{folder}/Testing/"
|
215 |
+
|
216 |
+
train_image_df, test_image_df = GetLoadData.load_image_dataset(train_dataset_path, test_dataset_path)
|
217 |
+
|
218 |
+
train_gen, test_gen = data_train_pred.data_configuration(train_image_df, test_image_df)
|
219 |
+
model = data_train_pred.model_architecture()
|
220 |
+
|
221 |
+
result = data_train_pred.train_model(model, train_gen, test_gen, epoch)
|
222 |
+
|
223 |
+
# Mengambil nilai akurasi training dan validation dari objek result
|
224 |
+
train_acc = result.history['accuracy'][-1]
|
225 |
+
val_acc = result.history['val_accuracy'][-1]
|
226 |
+
|
227 |
+
# Plot accuracy
|
228 |
+
data_train_pred.plot_accuracy(result=result, epoch=epoch)
|
229 |
+
acc_url = f'{public_url}/static/accuracy_plot.png'
|
230 |
+
|
231 |
+
# Plot loss
|
232 |
+
data_train_pred.plot_loss(result=result, epoch=epoch)
|
233 |
+
loss_url = f'{public_url}/static/loss_plot.png'
|
234 |
+
|
235 |
+
# Confusion Matrix
|
236 |
+
data_train_pred.plot_confusion_matrix(model, test_gen)
|
237 |
+
conf_url = f'{public_url}/static/confusion_matrix.png'
|
238 |
+
|
239 |
+
return jsonify({'train_acc': train_acc, 'val_acc': val_acc, 'plot_acc': acc_url, 'plot_loss':loss_url,'conf':conf_url})
|