Spaces:
Running
Running
File size: 25,275 Bytes
dfea9ad 76a0baa dfea9ad 76a0baa dfea9ad 76a0baa dfea9ad 12fa2c2 dfea9ad dfa4fe2 0e1aeee 76a0baa dfa4fe2 dfea9ad 0e1aeee dfea9ad 76a0baa dfea9ad 76a0baa dfea9ad 0e1aeee dfea9ad 76a0baa dfea9ad 76a0baa dfea9ad 0e1aeee dfea9ad 0e1aeee dfea9ad 76a0baa dfea9ad 76a0baa dfea9ad 0e1aeee dfea9ad 12fa2c2 76a0baa 12fa2c2 76a0baa 12fa2c2 76a0baa 12fa2c2 76a0baa dfea9ad 76a0baa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="description" content="World-model-augmented (WMA) web agent that simulates action outcomes for better decision-making in long-horizon web tasks.">
<meta name="keywords" content="Web Agents, World Models, LLMs, Web Navigation, Autonomous Agents">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Web Agents with World Models: Learning and Leveraging Environment Dynamics in Web Navigation</title>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.svg">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
<script type="text/javascript" async
src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script type="text/javascript" async
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.0/es5/tex-mml-chtml.js"></script>
<script>
function showStep(stepNumber) {
// Hide all step contents
var stepContents = document.querySelectorAll('.step-content');
for (var i = 0; i < stepContents.length; i++) {
stepContents[i].style.display = 'none';
}
// Remove active class from all tabs
var tabs = document.querySelectorAll('.tabs li');
for (var i = 0; i < tabs.length; i++) {
tabs[i].classList.remove('is-active');
}
// Show the selected step content and activate its tab
document.getElementById('step' + stepNumber + '-content').style.display = 'block';
document.getElementById('step' + stepNumber + '-tab').classList.add('is-active');
}
// Initialize when DOM is fully loaded
document.addEventListener('DOMContentLoaded', function() {
showStep(1);
});
</script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Web Agents with World Models: Learning and Leveraging Environment Dynamics in Web Navigation</h1>
<div class="publication-links">
<div class="is-size-5 publication-authors">
<span class="author-block"><a href="#">Hyungjoo Chae</a>,</span>
<span class="author-block"><a href="#">Namyoung Kim</a>,</span>
<span class="author-block"><a href="#">Kai Tzu-iunn Ong</a>,</span>
<span class="author-block"><a href="#">Minju Gwak</a>,</span>
<span class="author-block"><a href="#">Gwanwoo Song</a>,</span>
<span class="author-block"><a href="#">Jihoon Kim</a>,</span>
<span class="author-block"><a href="#">Sunghwan Kim</a>,</span>
<span class="author-block"><a href="#">Dongha Lee</a>,</span>
<span class="author-block"><a href="#">Jinyoung Yeo</a></span>
</div>
<div class="is-size-5 publication-affiliations">
<span class="affiliation-block">Yonsei University</span>
</div>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Paper Link -->
<span class="link-block">
<a href="https://arxiv.org/abs/2410.13232" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- Code Link -->
<span class="link-block">
<a href="https://github.com/kyle8581/WMA-Agents" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- Demo Link -->
<span class="link-block">
<a href="https://huggingface.co/spaces/hyungjoochae/WMA-Agent-Demo" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-play"></i>
</span>
<span>Demo</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!--
<section class="hero is-light">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<div class="content has-text-centered">
<img src="static/images/figure1_wma_overview.png" alt="WMA Overview">
</div>
</div>
</div>
</div>
</div>
</section> -->
<section class="section" style="padding-top: 0px;">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<div class="box has-background-white" style="box-shadow: 0 0.5em 1em -0.125em rgba(10, 10, 10, 0.3), 0 0 0 1px rgba(10, 10, 10, 0.05);">
<h2 class="title is-2">Overview</h2>
<br>
<div class="content has-text-centered">
<img src="static/images/figure1_wma_overview.png" alt="WMA Web Agent">
</div>
<p>Large language models (LLMs) have recently gained much attention in building autonomous agents. However, the performance of current LLM-based web agents in long-horizon tasks is far from optimal, often yielding errors such as repeatedly buying a non-refundable flight ticket. By contrast, humans can avoid such an irreversible mistake, as we have an awareness of the potential outcomes (e.g., losing money) of our actions, also known as the <strong>"world model"</strong>. Motivated by this, our study first starts with preliminary analyses, confirming the absence of world models in current LLMs (e.g., GPT-4, Claude-3.5-Sonnet, etc.). Then, we present a <strong>World-Model-Augmented (WMA) web agent</strong>, which simulates the outcomes of its actions for better decision-making. To overcome the challenges in training LLMs as world models predicting next observations, such as repeated elements across observations and long HTML inputs, we propose a transition-focused observation abstraction, where the prediction objectives are free-form natural language descriptions exclusively highlighting important state differences between time steps. Experiments on <a href="https://github.com/web-arena-x/webarena">WebArena</a> and <a href="https://github.com/OSU-NLP-Group/Mind2Web">Mind2Web</a> show that our world models improve agents' policy selection without training and demonstrate our agents' cost- and time-efficiency compared to recent tree-search-based agents.
</p>
<br>
<div class="content">
<h3 class="title is-4">🌍 News</h3>
<ul>
<li><strong>[2025/01/22] WMA Web Agent is accepted by ICLR 2025!</strong></li>
<li><strong>[2024/06/12] WMA Web Agent is out!</strong></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<h2 class="title is-2">Methodology</h2>
<div class="tabs">
<ul>
<li id="step1-tab" class="is-active"><a href="#" onclick="showStep(1); return false;">Phase I: World Model Training</a></li>
<li id="step2-tab"><a href="#" onclick="showStep(2); return false;">Phase II: Inference-Time Policy Optimization with the World Model</a></li>
</ul>
</div>
<div id="step1-content" class="content step-content">
<div class="content has-text-centered">
<img src="static/images/method_1.png" alt="World Model Training Methodology">
</div>
<h3 class="title is-4">Step I: Harvesting Agent-Environment Interaction Data</h3>
<p>
<p>
We start by collecting the dataset
\( \mathcal{D} = \sum^{n}_{t=1} \{ I, o_t, a_t, o_{t+1} \} \)
from the environment \( \mathcal{E} \) for training world models.
For that, we prompt an LLM as a web agent to achieve the goal provided in the user instruction \( I \),
by iteratively predicting an action \( a_t \) based on the current observation \( o_t \)
throughout all \( n \) time steps.
Consequently, we obtain \( \mathcal{D} \) from trajectory
\( \tau = \{o_1, a_1, o_2, ..., a_{n}, o_{n+1}\} \) based on \( I \),
and environment states of \( n \) time steps
\( \{s_1, ..., s_{n+1}\} \subset \mathcal{S} \)
obtained via transition function \( \mathcal{T} \).
</p>
</p>
<h3 class="title is-4">Step II: Transition-Focused Observation Abstraction</h3>
<p>
With the collected data
\( \mathcal{D} = \sum^{n}_{t=1} \{ I, o_t, a_t, o_{t+1} \} \),
it is intuitive to train LLM-based world models to predict \( o_{t+1} \),
which is expressed with texts (e.g., HTML and accessibility tree).
</p>
<div class="has-text-centered">
<figure class="image" style="width: 80%; margin: 0 auto;">
<img src="static/images/figure_5.png" alt="Figure 5: Transition-Focused Observation Abstraction">
</figure>
</div>
<p>As shown in Figure 5, we first (i) apply the Hungarian algorithm
to calculate a cost matrix for matching elements between
\( o_t \) and \( o_{t+1} \) and (ii) mechanically transform the results into a list of state transition
\( \Delta(o_t, o_{t+1}) \), pointing out <code>UPDATED</code>, <code>DELETED</code>, and <code>ADDED</code> elements on the web.
After that, we prompt an LLM to convert the extracted \( \Delta(o_t, o_{t+1}) \) into a free-form natural language
description \( \tilde{o}_{t+1} \), which highlights the difference between the new observation \( o_{t+1} \) and \( o_t \).
Replacing \( o_{t+1} \) in
\( \mathcal{D} = \{ I, o_t, a_t, o_{t+1} \} \) collected in Step I with \( \tilde{o}_{t+1} \) we just acquired here,
we get a final dataset
\( \tilde{\mathcal{D}} = \sum^{n}_{t=1} \{ I, o_t, a_t, \tilde{o}_{t+1} \} \)
for training world models.</p>
<h3 class="title is-4">Step III: Learning Environment Dynamics</h3>
<p>
Lastly, using \( \tilde{\mathcal{D}} \), we proceed to train the internal world model \( \phi \) of the web agent
to learn the environment dynamics. Formally, an LLM working as the world model is trained to predict
the abstracted observation \( \tilde{o} \) of the next state \( s_{t+1} \), given three inputs:
the user instruction \( I \), the current observation \( o_t \), and the current action \( a_t \).
This LLM is trained to minimize the following loss term via the next-token prediction objective:
</p>
<p>
\[
\mathcal{L}_{\phi} = -\log \sum_{(\tilde{o}, o, a, I) \in \tilde{\mathcal{D}}} p(\tilde{o}_{t+1}| o_t, a_t, I)
\]
</p>
</div>
<div id="step2-content" class="content step-content" style="display: none;">
<div class="content has-text-centered">
<img src="static/images/method_2.png" alt="Inference-Time Policy Optimization with the World Model">
</div>
<p>
During inference at time \( t \) with a current observation \( o_t \), the WMA web agent utilizes the world model \( \phi \) to foresee how an action can affect the state (i.e., predict \( \tilde{o}_{t+1}^i \)), and accordingly finds an optimal action/policy \( a_t \) from the policy model \( \theta \) that leads to the target goal defined in \( \mathcal{I} \).
</p>
<p>
We begin by sampling \( k \) action candidates
\( \{a_t^1, a_t^2, ..., a_t^k\} \) from \( \theta \) via top-\( p \) decoding, to conduct diverse exploration on future observations
\( \{o_{t+1}^1, o_{t+1}^2, ..., o_{t+1}^k\} \).
Next, we use the world model \( \phi \) to "<em>simulate</em>" the potential next observation \( \tilde{o}_{t+1}^i \) caused by each action candidate \( a_t \):
</p>
<p>
\[
\{\tilde{o}_{t+1}^i\}_{i=1}^k = \{\phi(o_t, a_t^i, I)\}_{i=1}^k
\]
</p>
<p>
Lastly, we decide the agent's action for actual operation by selecting the action leading to the most optimal future state \( s_{t+1} \) from all action candidates.
We use an off-the-shelf LLM as a value function \( V(\cdot) \) to estimate the reward yielded by each action candidate
and select the action \( \hat{a}_t \) with the highest reward:
</p>
<p>
\[
\hat{a}_t = \underset{a_t \in \{a_t^1, ..., a_t^k\}}{\text{argmax}} \, V(I, o_t, a_t, \tilde{o}_{t+1}^i)
\]
</p>
</div>
</div>
</div>
</div>
</section>
<section class="section" style="padding-top: 0; padding-bottom: 0;">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<hr style="height: 2px; background-color: #dbdbdb; margin: 2rem 0;">
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<h2 class="title is-2">Experiments Setup</h2>
<div class="content">
<h3 class="title is-4">Benchmarks and evaluation metrics</h3>
<p>For evaluation, we use the official <a href="https://github.com/web-arena-x/webarena">WebArena</a> and
<a href="https://github.com/OSU-NLP-Group/Mind2Web">Mind2Web</a> benchmarks. WebArena includes 812 real-life tasks
in simulated environments across five different websites, spanning four key domains - e-commerce
(Shopping), social forums (Reddit), collaborative software development (Gitlab), content manage-
ment (CMS), and Map. The main
metric, Success Rate (SR), is calculated as the percentage of the user instructions that are success-
fully accomplished by the generated agent trajectory. On the other hand, Mind2Web covers over 2,000 open-ended tasks, collected from 137 websites of 31 domains and crowd-
sourced action sequences for the tasks. Along with the SR, Mind2Web also uses Step SR, which
measures whether the predicted action selects both the correct action type (action F1) and element
ID (element accuracy). When the agent succeeds in all steps in a trajectory, it is evaluated as success.</p>
</div>
</div>
</div>
</div>
</section>
<section class="section" style="padding-top: 0; padding-bottom: 0;">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<hr style="height: 2px; background-color: #dbdbdb; margin: 2rem 0;">
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<h2 class="title is-2">Results</h2>
<div class="content">
<h3 class="title is-4">Agent Performance in WebArena</h3>
<div class="has-text-centered">
<figure class="image">
<img src="static/images/table_1.png" alt="Table 1">
</figure>
<figure class="image">
<img src="static/images/table_2.png" alt="Table 2" style="width: 90%; margin: 0 auto;">
</figure>
</div>
<br>
<p>From our experiments in Table 1 and Table 2, we observed the following results:</p>
<ul>
<li><strong>WMA vs. Vanilla CoT</strong>
<ul>
<li>WMA web agent achieves a 16.6% success rate compared to 13.1% for vanilla CoT.</li>
<li>Significant improvements are observed across almost all domains in WebArena (see Table 2).</li>
</ul>
</li>
<br>
<li><strong>Performance Gains with GPT-4o-mini</strong>
<ul>
<li>181% performance gain over CoT in the Gitlab domain.</li>
<li>92% performance gain over CoT in the Map domain.</li>
</ul>
</li>
<br>
<li><strong>Comparison with Tree Search Agent (Koh et al., 2024)</strong>
<ul>
<li>The Tree search agent has a slightly higher absolute success rate (19.2%) compared to the WMA agent (16.6%).</li>
<li>The WMA agent shows a larger performance improvement over vanilla CoT (+29.7%) than the Tree search agent (+28.0%).</li>
</ul>
</li>
</ul>
</div>
<br>
<div class="content">
<h3 class="title is-4">Agent Performance in Mind2Web</h3>
<figure class="image">
<img src="static/images/table_3.png" alt="Table 3">
</figure>
<p>From our experiments in Table 3, we observed the following results:</p>
<ul>
<li><strong>Comparison with Previous SOTA Methods</strong>
<ul>
<li>WMA web agent is compared with MindAct (Deng et al., 2024) and AWM (Wang et al., 2024b).</li>
<li>WMA web agent significantly outperforms AWM, achieving new SOTA performance.</li>
</ul>
</li>
<br>
<li><strong>Generalization Capability of WMA</strong>
<ul>
<li>WMA web agent, trained on Mind2Web data, shows strong generalization capabilities.</li>
<li>This makes our approach much more valuable in scenarios where
collecting data for new web environments is non-trivial.</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</div>
</section>
<section class="section" style="padding-top: 0; padding-bottom: 0;">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<hr style="height: 2px; background-color: #dbdbdb; margin: 2rem 0;">
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<h2 class="title is-2">Analysis</h2>
<div class="content">
<h3 class="title is-4">Time and Cost Efficiency</h3>
<div class="has-text-centered">
<figure class="image">
<img src="static/images/table_4.png" alt="Table 4">
</figure>
</div>
<ul>
<li><strong>Time Efficiency</strong>
<ul>
<li>Tree search agent takes an average of 748.3 seconds per user instruction due to state exploration and backtracing.</li>
<li>WMA web agent completes the same task in only 140.3 seconds by simulating actions instead of executing them.</li>
<li>WMA is 5.3 times faster than Tree search agent.</li>
</ul>
</li>
<br>
<li><strong>API Cost Efficiency</strong>
<ul>
<li>Tree search agent incurs 6.8 times higher API costs due to its multi-modal inputs.</li>
</ul>
</li>
</ul>
</div>
<br>
<div class="content">
<h3 class="title is-4">Ablation Study</h3>
<p>
We conduct several ablation studies on our WMA web agent with 200 randomly sampled instances from WebArena (Shopping: 50; Gitlab: 50; Map: 100). We use GPT-4o-mini as policy models.
</p>
<div class="has-text-centered">
<figure class="image" style="width: 90%; margin: 0 auto;">
<img src="static/images/table_5.png" alt="Table 5">
</figure>
</div>
<br>
<p>
We observe the following findings in Table 5:
<ul>
<li>Accessing simulated next states in reward estimation improves agent performance.</li>
<li>Fine-tuning facilitates better world models than prompt-based approaches.</li>
<li>Abstracting observation elicits better next state prediction.</li>
</ul>
</p>
<br>
<div class="has-text-centered">
<div class="columns is-centered">
<div class="column is-half has-text-centered">
<figure class="image" style="width: 80%; margin: 0 auto;">
<img src="static/images/table_6.png" alt="Table 6">
</figure>
</div>
<div class="column is-half has-text-centered">
<figure class="image" style="width: 80%; margin: 0 auto;">
<img src="static/images/figure_6.png" alt="Figure 6: Qualitative Analysis">
</figure>
</div>
</div>
</div>
<p>
Additionally, we reveal the following findings in Table 6 and Figure 6:
<ul>
<li>Fine-tuning the value function is a reasonable alternative in scenarios where API budgets are limited.</li>
<li>Our WMA web agent may benefit from more exploration of the future states when the budget is allowed.</li>
</ul>
</p>
</div>
</div>
</div>
</div>
</section>
<section class="section" style="padding-top: 0; padding-bottom: 0;">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<hr style="height: 2px; background-color: #dbdbdb; margin: 2rem 0;">
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<h2 class="title is-2">Case Study</h2>
<div class="content">
<p>
WMA web agent successfully inferences on Gitlab
domain in the WebArena benchmark (instance #175). Using the policy model (i.e., GPT-4o), WMA
web agent selects the most proper action click [88] by leveraging its learned environment dynamics.
</p>
<div class="has-text-centered">
<figure class="image" style="width: 100%; margin: 0 auto;">
<img src="static/images/case.png" alt="Case Study Example">
</figure>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section" style="padding-top: 0; padding-bottom: 0;">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<hr style="height: 2px; background-color: #dbdbdb; margin: 2rem 0;">
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<h2 class="title is-2">Citation</h2>
<div class="content">
<pre style="white-space: pre-wrap; word-wrap: break-word;"><code>@inproceedings{chae2024web,
title={Web agents with world models: Learning and leveraging environment dynamics in web navigation},
author={Chae, Hyungjoo and Kim, Namyoung and Ong, Kai Tzu-iunn and Gwak, Minju and Song, Gwanwoo and Kim, Jihoon and Kim, Sunghwan and Lee, Dongha and Yeo, Jinyoung},
booktitle={The Thirteenth International Conference on Learning Representations}
}</code></pre>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<h2 class="title is-2
::contentReference[oaicite:2]{index=2}
|