File size: 11,841 Bytes
dd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import dataclasses
import os
import random
import re
import tempfile

import numpy as np
import pytest

from browsergym.core.action.base import AbstractActionSet
from browsergym.experiments.agent import Agent
from browsergym.experiments.benchmark import Benchmark, HighLevelActionSetArgs
from browsergym.experiments.benchmark.configs import DEFAULT_BENCHMARKS
from browsergym.experiments.benchmark.utils import make_env_args_list_from_fixed_seeds
from browsergym.experiments.loop import AbstractAgentArgs, ExpArgs, get_exp_result
from browsergym.utils.obs import flatten_axtree_to_str


class MiniwobTestAgent(Agent):

    def __init__(self, action_set: AbstractActionSet):
        self.action_set = action_set

    def obs_preprocessor(self, obs: dict):
        return {"axtree_txt": flatten_axtree_to_str(obs["axtree_object"])}

    def get_action(self, obs: dict) -> tuple[str, dict]:
        match = re.search(r"^\s*\[(\d+)\].*button", obs["axtree_txt"], re.MULTILINE | re.IGNORECASE)

        if match:
            bid = match.group(1)
            action = f'click("{bid}")'
        else:
            raise Exception("Can't find the button's bid")

        return action, dict(think="I'm clicking the button as requested.")


@dataclasses.dataclass
class MiniwobTestAgentArgs(AbstractAgentArgs):
    high_level_action_set: HighLevelActionSetArgs = None

    def make_agent(self):
        return MiniwobTestAgent(action_set=self.high_level_action_set.make_action_set())


def test_build_benchmarks():
    expected_bench_size = {
        "miniwob": 125 * 5,
        "miniwob_tiny_test": 2 * 2,
        "webarena": 812,
        "webarena_tiny": 6,
        "visualwebarena": 910,
        "visualwebarena_tiny": 4,
        "workarena_l1": 33 * 10,
        "workarena_l2_agent_curriculum_eval": 235,
        "workarena_l3_agent_curriculum_eval": 235,
        "assistantbench": 214,
        "weblinx": 31586,
    }
    for name, benchmark_builder in DEFAULT_BENCHMARKS.items():
        benchmark = benchmark_builder()
        assert name == benchmark.name
        assert benchmark.env_args_list  # non-empty
        assert benchmark.task_metadata is not None
        assert len(benchmark.env_args_list) == expected_bench_size[name]
        benchmark_bis = Benchmark.from_json(benchmark.to_json())
        assert benchmark.to_dict() == benchmark_bis.to_dict()


def test_benchmark_subset():
    benchmark: Benchmark = DEFAULT_BENCHMARKS["miniwob"]()

    benchmark_subset = benchmark.subset_from_regexp(column="task_name", regexp="click")
    assert len(benchmark_subset.env_args_list) == 31 * 5
    assert benchmark_subset.name == "miniwob[task_name=/click/]"

    benchmark_subset_1 = benchmark_subset.subset_from_regexp(
        column="miniwob_category", regexp="original"
    )
    benchmark_subset_2 = benchmark_subset.subset_from_glob(
        column="miniwob_category", glob="original"
    )

    assert benchmark_subset_1.name == "miniwob[task_name=/click/][miniwob_category=/original/]"
    assert benchmark_subset_2.name == "miniwob[task_name=/click/][miniwob_category=original]"

    dict_1 = benchmark_subset_1.to_dict()
    dict_1.pop("name")
    dict_2 = benchmark_subset_2.to_dict()
    dict_2.pop("name")

    assert dict_1 == dict_2


def test_benchmark_subset_from_task_ratio():
    benchmark: Benchmark = DEFAULT_BENCHMARKS["webarena"]()

    # Store initial random state
    initial_state = random.getstate()

    benchmark_subset = benchmark.subset_from_task_ratio(ratio=0.5, seed=1)
    assert len(benchmark_subset.env_args_list) == 812 // 2
    assert benchmark_subset.name == "webarena[ratio=0.5, seed=1]"

    # Verify global random state hasn't changed
    assert random.getstate() == initial_state

    benchmark_subset_1 = benchmark_subset.subset_from_task_ratio(ratio=0.5, seed=1)
    benchmark_subset_2 = benchmark_subset.subset_from_task_ratio(ratio=0.5, seed=2)

    # Verify global random state still hasn't changed
    assert random.getstate() == initial_state

    # Check the task lists are different
    assert not np.all(
        [
            env_args.task_name == env_args_2.task_name
            for env_args, env_args_2 in zip(
                benchmark_subset_1.env_args_list, benchmark_subset_2.env_args_list
            )
        ]
    )

    dict_1 = benchmark_subset_1.to_dict()
    dict_1.pop("name")
    dict_2 = benchmark_subset_2.to_dict()
    dict_2.pop("name")
    assert len(dict_1["env_args_list"]) == len(dict_2["env_args_list"])
    assert dict_1 != dict_2


def test_prepare_backend_miniwob():
    MINIWOB_URL = os.environ["MINIWOB_URL"]
    try:
        benchmark: Benchmark = DEFAULT_BENCHMARKS["miniwob"]()

        benchmark.prepare_backends()

        del os.environ["MINIWOB_URL"]
        with pytest.raises(Exception):
            benchmark.prepare_backends()

        os.environ["MINIWOB_URL"] = ""
        with pytest.raises(Exception):
            benchmark.prepare_backends()
    finally:
        os.environ["MINIWOB_URL"] = MINIWOB_URL


def test_prepare_backend_assistantbench():
    benchmark: Benchmark = DEFAULT_BENCHMARKS["assistantbench"]()
    benchmark.prepare_backends()


@pytest.mark.skip
def test_prepare_backend_webarena():
    WA_FULL_RESET = os.environ["WA_FULL_RESET"]
    try:
        benchmark: Benchmark = DEFAULT_BENCHMARKS["webarena"]()

        benchmark.prepare_backends()

        del os.environ["WA_FULL_RESET"]
        with pytest.raises(Exception):
            benchmark.prepare_backends()

        os.environ["WA_FULL_RESET"] = "http://localhost:12345/reset"
        with pytest.raises(Exception):
            benchmark.prepare_backends()
    finally:
        os.environ["WA_FULL_RESET"] = WA_FULL_RESET


@pytest.mark.skip
def test_prepare_backend_visualwebarena():
    VWA_FULL_RESET = os.environ["VWA_FULL_RESET"]
    try:
        benchmark: Benchmark = DEFAULT_BENCHMARKS["visualwebarena"]()

        benchmark.prepare_backends()

        del os.environ["VWA_FULL_RESET"]
        with pytest.raises(Exception):
            benchmark.prepare_backends()

        os.environ["VWA_FULL_RESET"] = "http://localhost:12345/reset"
        with pytest.raises(Exception):
            benchmark.prepare_backends()
    finally:
        os.environ["VWA_FULL_RESET"] = VWA_FULL_RESET


@pytest.mark.skip
def test_prepare_backend_weblinx():
    BROWSERGYM_WEBLINX_CACHE_DIR = os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"]
    try:
        benchmark: Benchmark = DEFAULT_BENCHMARKS["weblinx"]()

        benchmark.prepare_backends()

        del os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"]
        with pytest.raises(Exception):
            benchmark.prepare_backends()

    finally:
        os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"] = BROWSERGYM_WEBLINX_CACHE_DIR


def test_run_mock_benchmark():
    benchmark = Benchmark(
        name="miniwob_click_test",
        high_level_action_set_args=HighLevelActionSetArgs(
            subsets=["bid"],
            multiaction=False,
            strict=False,
            retry_with_force=True,
            demo_mode="off",
        ),
        is_multi_tab=False,
        supports_parallel_seeds=True,
        backends=["miniwob"],
        env_args_list=make_env_args_list_from_fixed_seeds(
            task_list=["miniwob.click-test"],
            max_steps=5,
            fixed_seeds=[0, 1],
        ),
    )

    for env_args in benchmark.env_args_list:
        agent_args = MiniwobTestAgentArgs(
            high_level_action_set=benchmark.high_level_action_set_args
        )
        exp_args = ExpArgs(
            agent_args=agent_args,
            env_args=env_args,
        )

        with tempfile.TemporaryDirectory() as tmp_dir:
            exp_args.prepare(tmp_dir)
            exp_args.run()
            exp_result = get_exp_result(exp_args.exp_dir)
            exp_record = exp_result.get_exp_record()

            target = {
                "env_args.task_name": "miniwob.click-test",
                "env_args.headless": True,
                "env_args.record_video": False,
                "n_steps": 1,
                "cum_reward": 1.0,
                "terminated": True,
                "truncated": False,
            }

            assert len(exp_result.steps_info) == 2

            for key, target_val in target.items():
                assert key in exp_record
                assert exp_record[key] == target_val


def test_dependency_graphs():
    benchmark = Benchmark(
        name="my_bench",
        high_level_action_set_args=HighLevelActionSetArgs(
            subsets=["bid"],
            multiaction=False,
            strict=False,
            retry_with_force=True,
            demo_mode="off",
        ),
        is_multi_tab=False,
        supports_parallel_seeds=True,
        backends=["miniwob"],
        env_args_list=make_env_args_list_from_fixed_seeds(
            task_list=["miniwob.click-test"],
            max_steps=5,
            fixed_seeds=[0, 1],
        ),
    )

    # one task, two seeds
    task_dependencies = benchmark.dependency_graph_over_tasks()
    assert task_dependencies == {"miniwob.click-test": []}

    env_args_dependencies = benchmark.dependency_graphs_over_env_args()
    assert env_args_dependencies == [{0: [], 1: []}]

    # change to no parallel seed support
    benchmark.supports_parallel_seeds = False
    env_args_dependencies = benchmark.dependency_graphs_over_env_args()
    assert env_args_dependencies == [{0: []}, {1: []}]

    # webarena, 3 tasks x 1 seed
    benchmark = DEFAULT_BENCHMARKS["webarena"]().subset_from_regexp(
        column="task_name", regexp=r"^webarena\.[012]$"
    )

    task_dependencies = benchmark.dependency_graph_over_tasks()
    assert task_dependencies == {
        "webarena.0": [],
        "webarena.1": ["webarena.0"],
        "webarena.2": ["webarena.1"],
    }

    env_args_dependencies = benchmark.dependency_graphs_over_env_args()
    assert env_args_dependencies == [{0: [], 1: [0], 2: [1]}]

    # workarena L2, 2 task x (2 seeds, 1 seed)
    benchmark = DEFAULT_BENCHMARKS["workarena_l2_agent_curriculum_eval"]().subset_from_regexp(
        column="task_name",
        regexp=r"^workarena\.servicenow\.workload-balancing-small-l2$|^workarena\.servicenow\.easy-expense-management-small-l2$",
    )

    task_dependencies = benchmark.dependency_graph_over_tasks()
    assert task_dependencies == {
        "workarena.servicenow.workload-balancing-small-l2": [],
        "workarena.servicenow.easy-expense-management-small-l2": [],
    }

    env_args_dependencies = benchmark.dependency_graphs_over_env_args()
    assert env_args_dependencies == [{0: [], 1: [], 2: []}]

    # change to no parallel seed support
    benchmark.supports_parallel_seeds = False
    env_args_dependencies = benchmark.dependency_graphs_over_env_args()
    assert env_args_dependencies == [{0: [], 2: []}, {1: []}]

    # webarena, 6 dependent tasks x 1 seed
    benchmark = DEFAULT_BENCHMARKS["webarena"]().subset_from_regexp(
        column="task_name",
        regexp=r"^webarena\.533$|^webarena\.537$|^webarena\.552$|^webarena\.410$|^webarena\.561$|^webarena\.562$",
    )

    task_dependencies = benchmark.dependency_graph_over_tasks()
    assert {k: set(v) for k, v in task_dependencies.items()} == {
        k: set(v)
        for k, v in {
            "webarena.410": [],
            "webarena.533": [],
            "webarena.537": ["webarena.533"],
            "webarena.552": ["webarena.410", "webarena.537"],
            "webarena.561": ["webarena.552"],
            "webarena.562": ["webarena.552", "webarena.561"],
        }.items()
    }

    env_args_dependencies = benchmark.dependency_graphs_over_env_args()
    assert [{k: set(v) for k, v in deps.items()} for deps in env_args_dependencies] == [
        {k: set(v) for k, v in {0: [], 1: [], 2: [1], 3: [0, 2], 4: [3], 5: [3, 4]}.items()}
    ]