Spaces:
Running
Running
File size: 11,841 Bytes
dd39c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import dataclasses
import os
import random
import re
import tempfile
import numpy as np
import pytest
from browsergym.core.action.base import AbstractActionSet
from browsergym.experiments.agent import Agent
from browsergym.experiments.benchmark import Benchmark, HighLevelActionSetArgs
from browsergym.experiments.benchmark.configs import DEFAULT_BENCHMARKS
from browsergym.experiments.benchmark.utils import make_env_args_list_from_fixed_seeds
from browsergym.experiments.loop import AbstractAgentArgs, ExpArgs, get_exp_result
from browsergym.utils.obs import flatten_axtree_to_str
class MiniwobTestAgent(Agent):
def __init__(self, action_set: AbstractActionSet):
self.action_set = action_set
def obs_preprocessor(self, obs: dict):
return {"axtree_txt": flatten_axtree_to_str(obs["axtree_object"])}
def get_action(self, obs: dict) -> tuple[str, dict]:
match = re.search(r"^\s*\[(\d+)\].*button", obs["axtree_txt"], re.MULTILINE | re.IGNORECASE)
if match:
bid = match.group(1)
action = f'click("{bid}")'
else:
raise Exception("Can't find the button's bid")
return action, dict(think="I'm clicking the button as requested.")
@dataclasses.dataclass
class MiniwobTestAgentArgs(AbstractAgentArgs):
high_level_action_set: HighLevelActionSetArgs = None
def make_agent(self):
return MiniwobTestAgent(action_set=self.high_level_action_set.make_action_set())
def test_build_benchmarks():
expected_bench_size = {
"miniwob": 125 * 5,
"miniwob_tiny_test": 2 * 2,
"webarena": 812,
"webarena_tiny": 6,
"visualwebarena": 910,
"visualwebarena_tiny": 4,
"workarena_l1": 33 * 10,
"workarena_l2_agent_curriculum_eval": 235,
"workarena_l3_agent_curriculum_eval": 235,
"assistantbench": 214,
"weblinx": 31586,
}
for name, benchmark_builder in DEFAULT_BENCHMARKS.items():
benchmark = benchmark_builder()
assert name == benchmark.name
assert benchmark.env_args_list # non-empty
assert benchmark.task_metadata is not None
assert len(benchmark.env_args_list) == expected_bench_size[name]
benchmark_bis = Benchmark.from_json(benchmark.to_json())
assert benchmark.to_dict() == benchmark_bis.to_dict()
def test_benchmark_subset():
benchmark: Benchmark = DEFAULT_BENCHMARKS["miniwob"]()
benchmark_subset = benchmark.subset_from_regexp(column="task_name", regexp="click")
assert len(benchmark_subset.env_args_list) == 31 * 5
assert benchmark_subset.name == "miniwob[task_name=/click/]"
benchmark_subset_1 = benchmark_subset.subset_from_regexp(
column="miniwob_category", regexp="original"
)
benchmark_subset_2 = benchmark_subset.subset_from_glob(
column="miniwob_category", glob="original"
)
assert benchmark_subset_1.name == "miniwob[task_name=/click/][miniwob_category=/original/]"
assert benchmark_subset_2.name == "miniwob[task_name=/click/][miniwob_category=original]"
dict_1 = benchmark_subset_1.to_dict()
dict_1.pop("name")
dict_2 = benchmark_subset_2.to_dict()
dict_2.pop("name")
assert dict_1 == dict_2
def test_benchmark_subset_from_task_ratio():
benchmark: Benchmark = DEFAULT_BENCHMARKS["webarena"]()
# Store initial random state
initial_state = random.getstate()
benchmark_subset = benchmark.subset_from_task_ratio(ratio=0.5, seed=1)
assert len(benchmark_subset.env_args_list) == 812 // 2
assert benchmark_subset.name == "webarena[ratio=0.5, seed=1]"
# Verify global random state hasn't changed
assert random.getstate() == initial_state
benchmark_subset_1 = benchmark_subset.subset_from_task_ratio(ratio=0.5, seed=1)
benchmark_subset_2 = benchmark_subset.subset_from_task_ratio(ratio=0.5, seed=2)
# Verify global random state still hasn't changed
assert random.getstate() == initial_state
# Check the task lists are different
assert not np.all(
[
env_args.task_name == env_args_2.task_name
for env_args, env_args_2 in zip(
benchmark_subset_1.env_args_list, benchmark_subset_2.env_args_list
)
]
)
dict_1 = benchmark_subset_1.to_dict()
dict_1.pop("name")
dict_2 = benchmark_subset_2.to_dict()
dict_2.pop("name")
assert len(dict_1["env_args_list"]) == len(dict_2["env_args_list"])
assert dict_1 != dict_2
def test_prepare_backend_miniwob():
MINIWOB_URL = os.environ["MINIWOB_URL"]
try:
benchmark: Benchmark = DEFAULT_BENCHMARKS["miniwob"]()
benchmark.prepare_backends()
del os.environ["MINIWOB_URL"]
with pytest.raises(Exception):
benchmark.prepare_backends()
os.environ["MINIWOB_URL"] = ""
with pytest.raises(Exception):
benchmark.prepare_backends()
finally:
os.environ["MINIWOB_URL"] = MINIWOB_URL
def test_prepare_backend_assistantbench():
benchmark: Benchmark = DEFAULT_BENCHMARKS["assistantbench"]()
benchmark.prepare_backends()
@pytest.mark.skip
def test_prepare_backend_webarena():
WA_FULL_RESET = os.environ["WA_FULL_RESET"]
try:
benchmark: Benchmark = DEFAULT_BENCHMARKS["webarena"]()
benchmark.prepare_backends()
del os.environ["WA_FULL_RESET"]
with pytest.raises(Exception):
benchmark.prepare_backends()
os.environ["WA_FULL_RESET"] = "http://localhost:12345/reset"
with pytest.raises(Exception):
benchmark.prepare_backends()
finally:
os.environ["WA_FULL_RESET"] = WA_FULL_RESET
@pytest.mark.skip
def test_prepare_backend_visualwebarena():
VWA_FULL_RESET = os.environ["VWA_FULL_RESET"]
try:
benchmark: Benchmark = DEFAULT_BENCHMARKS["visualwebarena"]()
benchmark.prepare_backends()
del os.environ["VWA_FULL_RESET"]
with pytest.raises(Exception):
benchmark.prepare_backends()
os.environ["VWA_FULL_RESET"] = "http://localhost:12345/reset"
with pytest.raises(Exception):
benchmark.prepare_backends()
finally:
os.environ["VWA_FULL_RESET"] = VWA_FULL_RESET
@pytest.mark.skip
def test_prepare_backend_weblinx():
BROWSERGYM_WEBLINX_CACHE_DIR = os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"]
try:
benchmark: Benchmark = DEFAULT_BENCHMARKS["weblinx"]()
benchmark.prepare_backends()
del os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"]
with pytest.raises(Exception):
benchmark.prepare_backends()
finally:
os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"] = BROWSERGYM_WEBLINX_CACHE_DIR
def test_run_mock_benchmark():
benchmark = Benchmark(
name="miniwob_click_test",
high_level_action_set_args=HighLevelActionSetArgs(
subsets=["bid"],
multiaction=False,
strict=False,
retry_with_force=True,
demo_mode="off",
),
is_multi_tab=False,
supports_parallel_seeds=True,
backends=["miniwob"],
env_args_list=make_env_args_list_from_fixed_seeds(
task_list=["miniwob.click-test"],
max_steps=5,
fixed_seeds=[0, 1],
),
)
for env_args in benchmark.env_args_list:
agent_args = MiniwobTestAgentArgs(
high_level_action_set=benchmark.high_level_action_set_args
)
exp_args = ExpArgs(
agent_args=agent_args,
env_args=env_args,
)
with tempfile.TemporaryDirectory() as tmp_dir:
exp_args.prepare(tmp_dir)
exp_args.run()
exp_result = get_exp_result(exp_args.exp_dir)
exp_record = exp_result.get_exp_record()
target = {
"env_args.task_name": "miniwob.click-test",
"env_args.headless": True,
"env_args.record_video": False,
"n_steps": 1,
"cum_reward": 1.0,
"terminated": True,
"truncated": False,
}
assert len(exp_result.steps_info) == 2
for key, target_val in target.items():
assert key in exp_record
assert exp_record[key] == target_val
def test_dependency_graphs():
benchmark = Benchmark(
name="my_bench",
high_level_action_set_args=HighLevelActionSetArgs(
subsets=["bid"],
multiaction=False,
strict=False,
retry_with_force=True,
demo_mode="off",
),
is_multi_tab=False,
supports_parallel_seeds=True,
backends=["miniwob"],
env_args_list=make_env_args_list_from_fixed_seeds(
task_list=["miniwob.click-test"],
max_steps=5,
fixed_seeds=[0, 1],
),
)
# one task, two seeds
task_dependencies = benchmark.dependency_graph_over_tasks()
assert task_dependencies == {"miniwob.click-test": []}
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert env_args_dependencies == [{0: [], 1: []}]
# change to no parallel seed support
benchmark.supports_parallel_seeds = False
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert env_args_dependencies == [{0: []}, {1: []}]
# webarena, 3 tasks x 1 seed
benchmark = DEFAULT_BENCHMARKS["webarena"]().subset_from_regexp(
column="task_name", regexp=r"^webarena\.[012]$"
)
task_dependencies = benchmark.dependency_graph_over_tasks()
assert task_dependencies == {
"webarena.0": [],
"webarena.1": ["webarena.0"],
"webarena.2": ["webarena.1"],
}
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert env_args_dependencies == [{0: [], 1: [0], 2: [1]}]
# workarena L2, 2 task x (2 seeds, 1 seed)
benchmark = DEFAULT_BENCHMARKS["workarena_l2_agent_curriculum_eval"]().subset_from_regexp(
column="task_name",
regexp=r"^workarena\.servicenow\.workload-balancing-small-l2$|^workarena\.servicenow\.easy-expense-management-small-l2$",
)
task_dependencies = benchmark.dependency_graph_over_tasks()
assert task_dependencies == {
"workarena.servicenow.workload-balancing-small-l2": [],
"workarena.servicenow.easy-expense-management-small-l2": [],
}
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert env_args_dependencies == [{0: [], 1: [], 2: []}]
# change to no parallel seed support
benchmark.supports_parallel_seeds = False
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert env_args_dependencies == [{0: [], 2: []}, {1: []}]
# webarena, 6 dependent tasks x 1 seed
benchmark = DEFAULT_BENCHMARKS["webarena"]().subset_from_regexp(
column="task_name",
regexp=r"^webarena\.533$|^webarena\.537$|^webarena\.552$|^webarena\.410$|^webarena\.561$|^webarena\.562$",
)
task_dependencies = benchmark.dependency_graph_over_tasks()
assert {k: set(v) for k, v in task_dependencies.items()} == {
k: set(v)
for k, v in {
"webarena.410": [],
"webarena.533": [],
"webarena.537": ["webarena.533"],
"webarena.552": ["webarena.410", "webarena.537"],
"webarena.561": ["webarena.552"],
"webarena.562": ["webarena.552", "webarena.561"],
}.items()
}
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert [{k: set(v) for k, v in deps.items()} for deps in env_args_dependencies] == [
{k: set(v) for k, v in {0: [], 1: [], 2: [1], 3: [0, 2], 4: [3], 5: [3, 4]}.items()}
]
|