Spaces:
Running
Running
import os | |
import json | |
import base64 | |
import io | |
import argparse | |
import logging | |
import gradio as gr | |
import openai | |
import gymnasium as gym | |
import browsergym.core | |
from PIL import Image | |
import numpy as np | |
from browsergym.core.action.highlevel import HighLevelActionSet | |
from browsergym.utils.obs import flatten_axtree_to_str, flatten_dom_to_str, prune_html | |
from browsergym.experiments import Agent | |
from dotenv import load_dotenv | |
import cv2 | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.StreamHandler(), | |
logging.FileHandler('browser_agent.log') | |
] | |
) | |
logger = logging.getLogger(__name__) | |
load_dotenv() | |
# Set your OpenAI API key | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
# Example instructions to display | |
EXAMPLES = [ | |
"Search for the latest AI news on Google", | |
"Go to Wikipedia and find the population of Seoul", | |
"Open YouTube and play the top trending video", | |
] | |
def str2bool(v): | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ("yes", "true", "t", "y", "1"): | |
return True | |
elif v.lower() in ("no", "false", "f", "n", "0"): | |
return False | |
else: | |
raise argparse.ArgumentTypeError("Boolean value expected.") | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Run BrowserGym web agent.") | |
parser.add_argument( | |
"--model_name", | |
type=str, | |
default="gpt-4o", | |
help="OpenAI model name.", | |
) | |
parser.add_argument( | |
"--start_url", | |
type=str, | |
default="https://www.duckduckgo.com", | |
help="Starting URL for the openended task.", | |
) | |
parser.add_argument( | |
"--visual_effects", | |
type=str2bool, | |
default=True, | |
help="Add visual effects when the agent performs actions.", | |
) | |
parser.add_argument( | |
"--use_html", | |
type=str2bool, | |
default=False, | |
help="Use HTML in the agent's observation space.", | |
) | |
parser.add_argument( | |
"--use_axtree", | |
type=str2bool, | |
default=True, | |
help="Use AXTree in the agent's observation space.", | |
) | |
parser.add_argument( | |
"--use_screenshot", | |
type=str2bool, | |
default=False, | |
help="Use screenshot in the agent's observation space.", | |
) | |
parser.add_argument( | |
"--log_level", | |
type=str, | |
default="INFO", | |
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], | |
help="Set the logging level.", | |
) | |
return parser.parse_args() | |
def image_to_jpg_base64_url(image: np.ndarray | Image.Image): | |
"""Convert a numpy array to a base64 encoded image url.""" | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
if image.mode in ("RGBA", "LA"): | |
image = image.convert("RGB") | |
with io.BytesIO() as buffer: | |
image.save(buffer, format="JPEG") | |
image_base64 = base64.b64encode(buffer.getvalue()).decode() | |
return f"data:image/jpeg;base64,{image_base64}" | |
class BrowserAgent(Agent): | |
def obs_preprocessor(self, obs: dict) -> dict: | |
return { | |
"chat_messages": obs["chat_messages"], | |
"screenshot": obs["screenshot"], | |
"goal_object": obs["goal_object"], | |
"last_action": obs["last_action"], | |
"last_action_error": obs["last_action_error"], | |
"open_pages_urls": obs["open_pages_urls"], | |
"open_pages_titles": obs["open_pages_titles"], | |
"active_page_index": obs["active_page_index"], | |
"axtree_txt": flatten_axtree_to_str(obs["axtree_object"], filter_visible_only=True, extra_properties=obs['extra_element_properties']), | |
"pruned_html": prune_html(flatten_dom_to_str(obs["dom_object"])), | |
} | |
def __init__(self, model_name: str = "gpt-4o", use_html: bool = False, use_axtree: bool = True, use_screenshot: bool = False): | |
super().__init__() | |
logger.info(f"Initializing BrowserAgent with model: {model_name}") | |
logger.info(f"Observation space: HTML={use_html}, AXTree={use_axtree}, Screenshot={use_screenshot}") | |
self.model_name = model_name | |
self.use_html = use_html | |
self.use_axtree = use_axtree | |
self.use_screenshot = use_screenshot | |
if not (use_html or use_axtree): | |
raise ValueError("Either use_html or use_axtree must be set to True.") | |
self.openai_client = openai.OpenAI() | |
self.action_set = HighLevelActionSet( | |
subsets=["chat", "tab", "nav", "bid", "infeas"], | |
strict=False, | |
multiaction=False, | |
demo_mode="default" | |
) | |
self.action_history = [] | |
def get_action(self, obs: dict) -> tuple[str, dict]: | |
logger.debug("Preparing action request") | |
system_msgs = [{ | |
"type": "text", | |
"text": """\ | |
# Instructions | |
You are a UI Assistant, your goal is to help the user perform tasks using a web browser. You can | |
communicate with the user via a chat, to which the user gives you instructions and to which you | |
can send back messages. You have access to a web browser that both you and the user can see, | |
and with which only you can interact via specific commands. | |
Review the instructions from the user, the current state of the page and all other information | |
to find the best possible next action to accomplish your goal. Your answer will be interpreted | |
and executed by a program, make sure to follow the formatting instructions. | |
""" | |
}] | |
user_msgs = [] | |
# Add chat messages | |
user_msgs.append({ | |
"type": "text", | |
"text": "# Chat Messages\n" | |
}) | |
for msg in obs["chat_messages"]: | |
if msg["role"] in ("user", "assistant", "infeasible"): | |
user_msgs.append({ | |
"type": "text", | |
"text": f"- [{msg['role']}] {msg['message']}\n" | |
}) | |
logger.debug(f"Added chat message: [{msg['role']}] {msg['message']}") | |
elif msg["role"] == "user_image": | |
user_msgs.append({"type": "image_url", "image_url": msg["message"]}) | |
logger.debug("Added user image message") | |
# Add open tabs info | |
user_msgs.append({ | |
"type": "text", | |
"text": "# Currently open tabs\n" | |
}) | |
for page_index, (page_url, page_title) in enumerate( | |
zip(obs["open_pages_urls"], obs["open_pages_titles"]) | |
): | |
user_msgs.append({ | |
"type": "text", | |
"text": f"""\ | |
Tab {page_index}{" (active tab)" if page_index == obs["active_page_index"] else ""} | |
Title: {page_title} | |
URL: {page_url} | |
""" | |
}) | |
logger.debug(f"Added tab info: {page_title} ({page_url})") | |
# Add accessibility tree if enabled | |
if self.use_axtree: | |
user_msgs.append({ | |
"type": "text", | |
"text": f"""\ | |
# Current page Accessibility Tree | |
{obs["axtree_txt"]} | |
""" | |
}) | |
logger.debug("Added accessibility tree") | |
# Add HTML if enabled | |
if self.use_html: | |
user_msgs.append({ | |
"type": "text", | |
"text": f"""\ | |
# Current page DOM | |
{obs["pruned_html"]} | |
""" | |
}) | |
logger.debug("Added HTML DOM") | |
# Add screenshot if enabled | |
if self.use_screenshot: | |
user_msgs.append({ | |
"type": "text", | |
"text": "# Current page Screenshot\n" | |
}) | |
user_msgs.append({ | |
"type": "image_url", | |
"image_url": { | |
"url": image_to_jpg_base64_url(obs["screenshot"]), | |
"detail": "auto" | |
} | |
}) | |
logger.debug("Added screenshot") | |
# Add action space description | |
user_msgs.append({ | |
"type": "text", | |
"text": f"""\ | |
# Action Space | |
{self.action_set.describe(with_long_description=False, with_examples=True)} | |
Here are examples of actions with chain-of-thought reasoning: | |
I now need to click on the Submit button to send the form. I will use the click action on the button, which has bid 12. | |
```click("12")``` | |
I found the information requested by the user, I will send it to the chat. | |
```send_msg_to_user("The price for a 15\\" laptop is 1499 USD.")``` | |
""" | |
}) | |
# Add action history and errors | |
if self.action_history: | |
user_msgs.append({ | |
"type": "text", | |
"text": "# History of past actions\n" | |
}) | |
for action in self.action_history: | |
user_msgs.append({ | |
"type": "text", | |
"text": f"\n{action}\n" | |
}) | |
logger.debug(f"Added past action: {action}") | |
if obs["last_action_error"]: | |
user_msgs.append({ | |
"type": "text", | |
"text": f"""\ | |
# Error message from last action | |
{obs["last_action_error"]} | |
""" | |
}) | |
logger.warning(f"Last action error: {obs['last_action_error']}") | |
# Ask for next action | |
user_msgs.append({ | |
"type": "text", | |
"text": """\ | |
# Next action | |
You will now think step by step and produce your next best action. Reflect on your past actions, any resulting error message, and the current state of the page before deciding on your next action. | |
""" | |
}) | |
# Log the full prompt for debugging | |
prompt_text_strings = [] | |
for message in system_msgs + user_msgs: | |
match message["type"]: | |
case "text": | |
prompt_text_strings.append(message["text"]) | |
case "image_url": | |
image_url = message["image_url"] | |
if isinstance(message["image_url"], dict): | |
image_url = image_url["url"] | |
if image_url.startswith("data:image"): | |
prompt_text_strings.append( | |
"image_url: " + image_url[:30] + "... (truncated)" | |
) | |
else: | |
prompt_text_strings.append("image_url: " + image_url) | |
case _: | |
raise ValueError( | |
f"Unknown message type {repr(message['type'])} in the task goal." | |
) | |
full_prompt_txt = "\n".join(prompt_text_strings) | |
logger.debug(full_prompt_txt) | |
# Query OpenAI model | |
logger.info("Sending request to OpenAI") | |
response = self.openai_client.chat.completions.create( | |
model=self.model_name, | |
messages=[ | |
{"role": "system", "content": system_msgs}, | |
{"role": "user", "content": user_msgs} | |
] | |
) | |
action = response.choices[0].message.content | |
logger.info(f"Received action from OpenAI: {action}") | |
self.action_history.append(action) | |
return action, {} | |
def run_agent(instruction: str, model_name: str = "gpt-4o", start_url: str = "https://www.duckduckgo.com", | |
use_html: bool = False, use_axtree: bool = True, use_screenshot: bool = False): | |
logger.info(f"Starting agent with instruction: {instruction}") | |
logger.info(f"Configuration: model={model_name}, start_url={start_url}") | |
trajectory = [] | |
agent = BrowserAgent( | |
model_name=model_name, | |
use_html=use_html, | |
use_axtree=use_axtree, | |
use_screenshot=use_screenshot | |
) | |
# Initialize BrowserGym environment | |
logger.info("Initializing BrowserGym environment") | |
env = gym.make( | |
"browsergym/openended", | |
task_kwargs={ | |
"start_url": start_url, | |
"task": "openended", # Required task parameter | |
"goal": instruction, | |
}, | |
wait_for_user_message=True | |
) | |
obs, info = env.reset() | |
logger.info("Environment initialized") | |
# Send user instruction to the environment | |
logger.info("Sending user instruction to environment") | |
obs, reward, terminated, truncated, info = env.step({ | |
"type": "send_msg_to_user", | |
"message": instruction | |
}) | |
processed_obs = agent.obs_preprocessor(obs) | |
logger.info(f"Obs: {processed_obs.keys()}") | |
logger.info(f"axtree_txt: {processed_obs['axtree_txt']}") | |
# 초기 상태 yield | |
trajectory.append((obs['screenshot'], "Initial state")) | |
yield obs['screenshot'], trajectory.copy() | |
try: | |
step_count = 0 | |
while True: | |
logger.info(f"Step {step_count}: Getting next action") | |
# Get next action from agent | |
action, _ = agent.get_action(processed_obs) | |
# Execute action | |
logger.info(f"Step {step_count}: Executing action: {action}") | |
obs, reward, terminated, truncated, info = env.step(action) | |
processed_obs = agent.obs_preprocessor(obs) | |
# trajectory에 numpy array 직접 저장 | |
trajectory.append((obs['screenshot'], action)) | |
logger.info(f"Step {step_count}: Saved screenshot and updated trajectory") | |
step_count += 1 | |
# 매 step마다 yield | |
yield obs['screenshot'], trajectory.copy() | |
if terminated or truncated: | |
logger.info(f"Episode ended: terminated={terminated}, truncated={truncated}") | |
break | |
finally: | |
logger.info("Closing environment") | |
env.close() | |
def main(): | |
args = parse_args() | |
# Set logging level from command line argument | |
logger.setLevel(getattr(logging, args.log_level)) | |
logger.info("Starting BrowserGym web agent") | |
logger.info(f"Arguments: {args}") | |
with gr.Blocks(title="🎯 Web Agent Demo with BrowserGym & OpenAI") as demo: | |
gr.Markdown("# Web Agent Demo (BrowserGym + OpenAI)") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## Examples") | |
gr.Examples( | |
examples=[[e] for e in EXAMPLES], | |
inputs=[gr.Textbox(label="Instruction")], | |
cache_examples=False, | |
) | |
with gr.Column(scale=2): | |
instruction = gr.Textbox( | |
label="Enter your instruction here", | |
placeholder="E.g., 'Search for AI then click #result-stats'", | |
lines=2, | |
) | |
model_name = gr.Dropdown( | |
label="Model", | |
choices=["gpt-4o", "gpt-4o-mini"], | |
value=args.model_name | |
) | |
run_btn = gr.Button("Run Agent") | |
browser_view = gr.Image(label="Browser View") | |
with gr.Column(scale=2): | |
gr.Markdown("## Trajectory History") | |
trajectory_gallery = gr.Gallery(label="Action & State", columns=2) | |
run_btn.click( | |
fn=run_agent, | |
inputs=[instruction, model_name], | |
outputs=[browser_view, trajectory_gallery], | |
api_name="run_agent", | |
show_progress=True, | |
concurrency_limit=1 | |
) | |
logger.info("Launching Gradio interface") | |
demo.launch() | |
if __name__ == "__main__": | |
main() | |