import dataclasses import os import random import re import tempfile import numpy as np import pytest from browsergym.core.action.base import AbstractActionSet from browsergym.experiments.agent import Agent from browsergym.experiments.benchmark import Benchmark, HighLevelActionSetArgs from browsergym.experiments.benchmark.configs import DEFAULT_BENCHMARKS from browsergym.experiments.benchmark.utils import make_env_args_list_from_fixed_seeds from browsergym.experiments.loop import AbstractAgentArgs, ExpArgs, get_exp_result from browsergym.utils.obs import flatten_axtree_to_str class MiniwobTestAgent(Agent): def __init__(self, action_set: AbstractActionSet): self.action_set = action_set def obs_preprocessor(self, obs: dict): return {"axtree_txt": flatten_axtree_to_str(obs["axtree_object"])} def get_action(self, obs: dict) -> tuple[str, dict]: match = re.search(r"^\s*\[(\d+)\].*button", obs["axtree_txt"], re.MULTILINE | re.IGNORECASE) if match: bid = match.group(1) action = f'click("{bid}")' else: raise Exception("Can't find the button's bid") return action, dict(think="I'm clicking the button as requested.") @dataclasses.dataclass class MiniwobTestAgentArgs(AbstractAgentArgs): high_level_action_set: HighLevelActionSetArgs = None def make_agent(self): return MiniwobTestAgent(action_set=self.high_level_action_set.make_action_set()) def test_build_benchmarks(): expected_bench_size = { "miniwob": 125 * 5, "miniwob_tiny_test": 2 * 2, "webarena": 812, "webarena_tiny": 6, "visualwebarena": 910, "visualwebarena_tiny": 4, "workarena_l1": 33 * 10, "workarena_l2_agent_curriculum_eval": 235, "workarena_l3_agent_curriculum_eval": 235, "assistantbench": 214, "weblinx": 31586, } for name, benchmark_builder in DEFAULT_BENCHMARKS.items(): benchmark = benchmark_builder() assert name == benchmark.name assert benchmark.env_args_list # non-empty assert benchmark.task_metadata is not None assert len(benchmark.env_args_list) == expected_bench_size[name] benchmark_bis = Benchmark.from_json(benchmark.to_json()) assert benchmark.to_dict() == benchmark_bis.to_dict() def test_benchmark_subset(): benchmark: Benchmark = DEFAULT_BENCHMARKS["miniwob"]() benchmark_subset = benchmark.subset_from_regexp(column="task_name", regexp="click") assert len(benchmark_subset.env_args_list) == 31 * 5 assert benchmark_subset.name == "miniwob[task_name=/click/]" benchmark_subset_1 = benchmark_subset.subset_from_regexp( column="miniwob_category", regexp="original" ) benchmark_subset_2 = benchmark_subset.subset_from_glob( column="miniwob_category", glob="original" ) assert benchmark_subset_1.name == "miniwob[task_name=/click/][miniwob_category=/original/]" assert benchmark_subset_2.name == "miniwob[task_name=/click/][miniwob_category=original]" dict_1 = benchmark_subset_1.to_dict() dict_1.pop("name") dict_2 = benchmark_subset_2.to_dict() dict_2.pop("name") assert dict_1 == dict_2 def test_benchmark_subset_from_task_ratio(): benchmark: Benchmark = DEFAULT_BENCHMARKS["webarena"]() # Store initial random state initial_state = random.getstate() benchmark_subset = benchmark.subset_from_task_ratio(ratio=0.5, seed=1) assert len(benchmark_subset.env_args_list) == 812 // 2 assert benchmark_subset.name == "webarena[ratio=0.5, seed=1]" # Verify global random state hasn't changed assert random.getstate() == initial_state benchmark_subset_1 = benchmark_subset.subset_from_task_ratio(ratio=0.5, seed=1) benchmark_subset_2 = benchmark_subset.subset_from_task_ratio(ratio=0.5, seed=2) # Verify global random state still hasn't changed assert random.getstate() == initial_state # Check the task lists are different assert not np.all( [ env_args.task_name == env_args_2.task_name for env_args, env_args_2 in zip( benchmark_subset_1.env_args_list, benchmark_subset_2.env_args_list ) ] ) dict_1 = benchmark_subset_1.to_dict() dict_1.pop("name") dict_2 = benchmark_subset_2.to_dict() dict_2.pop("name") assert len(dict_1["env_args_list"]) == len(dict_2["env_args_list"]) assert dict_1 != dict_2 def test_prepare_backend_miniwob(): MINIWOB_URL = os.environ["MINIWOB_URL"] try: benchmark: Benchmark = DEFAULT_BENCHMARKS["miniwob"]() benchmark.prepare_backends() del os.environ["MINIWOB_URL"] with pytest.raises(Exception): benchmark.prepare_backends() os.environ["MINIWOB_URL"] = "" with pytest.raises(Exception): benchmark.prepare_backends() finally: os.environ["MINIWOB_URL"] = MINIWOB_URL def test_prepare_backend_assistantbench(): benchmark: Benchmark = DEFAULT_BENCHMARKS["assistantbench"]() benchmark.prepare_backends() @pytest.mark.skip def test_prepare_backend_webarena(): WA_FULL_RESET = os.environ["WA_FULL_RESET"] try: benchmark: Benchmark = DEFAULT_BENCHMARKS["webarena"]() benchmark.prepare_backends() del os.environ["WA_FULL_RESET"] with pytest.raises(Exception): benchmark.prepare_backends() os.environ["WA_FULL_RESET"] = "http://localhost:12345/reset" with pytest.raises(Exception): benchmark.prepare_backends() finally: os.environ["WA_FULL_RESET"] = WA_FULL_RESET @pytest.mark.skip def test_prepare_backend_visualwebarena(): VWA_FULL_RESET = os.environ["VWA_FULL_RESET"] try: benchmark: Benchmark = DEFAULT_BENCHMARKS["visualwebarena"]() benchmark.prepare_backends() del os.environ["VWA_FULL_RESET"] with pytest.raises(Exception): benchmark.prepare_backends() os.environ["VWA_FULL_RESET"] = "http://localhost:12345/reset" with pytest.raises(Exception): benchmark.prepare_backends() finally: os.environ["VWA_FULL_RESET"] = VWA_FULL_RESET @pytest.mark.skip def test_prepare_backend_weblinx(): BROWSERGYM_WEBLINX_CACHE_DIR = os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"] try: benchmark: Benchmark = DEFAULT_BENCHMARKS["weblinx"]() benchmark.prepare_backends() del os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"] with pytest.raises(Exception): benchmark.prepare_backends() finally: os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"] = BROWSERGYM_WEBLINX_CACHE_DIR def test_run_mock_benchmark(): benchmark = Benchmark( name="miniwob_click_test", high_level_action_set_args=HighLevelActionSetArgs( subsets=["bid"], multiaction=False, strict=False, retry_with_force=True, demo_mode="off", ), is_multi_tab=False, supports_parallel_seeds=True, backends=["miniwob"], env_args_list=make_env_args_list_from_fixed_seeds( task_list=["miniwob.click-test"], max_steps=5, fixed_seeds=[0, 1], ), ) for env_args in benchmark.env_args_list: agent_args = MiniwobTestAgentArgs( high_level_action_set=benchmark.high_level_action_set_args ) exp_args = ExpArgs( agent_args=agent_args, env_args=env_args, ) with tempfile.TemporaryDirectory() as tmp_dir: exp_args.prepare(tmp_dir) exp_args.run() exp_result = get_exp_result(exp_args.exp_dir) exp_record = exp_result.get_exp_record() target = { "env_args.task_name": "miniwob.click-test", "env_args.headless": True, "env_args.record_video": False, "n_steps": 1, "cum_reward": 1.0, "terminated": True, "truncated": False, } assert len(exp_result.steps_info) == 2 for key, target_val in target.items(): assert key in exp_record assert exp_record[key] == target_val def test_dependency_graphs(): benchmark = Benchmark( name="my_bench", high_level_action_set_args=HighLevelActionSetArgs( subsets=["bid"], multiaction=False, strict=False, retry_with_force=True, demo_mode="off", ), is_multi_tab=False, supports_parallel_seeds=True, backends=["miniwob"], env_args_list=make_env_args_list_from_fixed_seeds( task_list=["miniwob.click-test"], max_steps=5, fixed_seeds=[0, 1], ), ) # one task, two seeds task_dependencies = benchmark.dependency_graph_over_tasks() assert task_dependencies == {"miniwob.click-test": []} env_args_dependencies = benchmark.dependency_graphs_over_env_args() assert env_args_dependencies == [{0: [], 1: []}] # change to no parallel seed support benchmark.supports_parallel_seeds = False env_args_dependencies = benchmark.dependency_graphs_over_env_args() assert env_args_dependencies == [{0: []}, {1: []}] # webarena, 3 tasks x 1 seed benchmark = DEFAULT_BENCHMARKS["webarena"]().subset_from_regexp( column="task_name", regexp=r"^webarena\.[012]$" ) task_dependencies = benchmark.dependency_graph_over_tasks() assert task_dependencies == { "webarena.0": [], "webarena.1": ["webarena.0"], "webarena.2": ["webarena.1"], } env_args_dependencies = benchmark.dependency_graphs_over_env_args() assert env_args_dependencies == [{0: [], 1: [0], 2: [1]}] # workarena L2, 2 task x (2 seeds, 1 seed) benchmark = DEFAULT_BENCHMARKS["workarena_l2_agent_curriculum_eval"]().subset_from_regexp( column="task_name", regexp=r"^workarena\.servicenow\.workload-balancing-small-l2$|^workarena\.servicenow\.easy-expense-management-small-l2$", ) task_dependencies = benchmark.dependency_graph_over_tasks() assert task_dependencies == { "workarena.servicenow.workload-balancing-small-l2": [], "workarena.servicenow.easy-expense-management-small-l2": [], } env_args_dependencies = benchmark.dependency_graphs_over_env_args() assert env_args_dependencies == [{0: [], 1: [], 2: []}] # change to no parallel seed support benchmark.supports_parallel_seeds = False env_args_dependencies = benchmark.dependency_graphs_over_env_args() assert env_args_dependencies == [{0: [], 2: []}, {1: []}] # webarena, 6 dependent tasks x 1 seed benchmark = DEFAULT_BENCHMARKS["webarena"]().subset_from_regexp( column="task_name", regexp=r"^webarena\.533$|^webarena\.537$|^webarena\.552$|^webarena\.410$|^webarena\.561$|^webarena\.562$", ) task_dependencies = benchmark.dependency_graph_over_tasks() assert {k: set(v) for k, v in task_dependencies.items()} == { k: set(v) for k, v in { "webarena.410": [], "webarena.533": [], "webarena.537": ["webarena.533"], "webarena.552": ["webarena.410", "webarena.537"], "webarena.561": ["webarena.552"], "webarena.562": ["webarena.552", "webarena.561"], }.items() } env_args_dependencies = benchmark.dependency_graphs_over_env_args() assert [{k: set(v) for k, v in deps.items()} for deps in env_args_dependencies] == [ {k: set(v) for k, v in {0: [], 1: [], 2: [1], 3: [0, 2], 4: [3], 5: [3, 4]}.items()} ]