File size: 11,352 Bytes
ab12faf
 
 
 
5db44b2
 
ab12faf
5db44b2
ab12faf
5db44b2
ab12faf
 
 
 
5db44b2
ab12faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5db44b2
ab12faf
5db44b2
ab12faf
 
 
 
5db44b2
 
 
ab12faf
 
 
5db44b2
 
 
ab12faf
 
 
5db44b2
 
 
ab12faf
 
 
 
 
 
 
 
 
 
 
 
 
 
5db44b2
ab12faf
 
 
 
 
 
 
 
 
5db44b2
ab12faf
 
5db44b2
ab12faf
5db44b2
 
 
 
 
 
 
 
 
ab12faf
 
 
 
 
 
 
 
5db44b2
ab12faf
5db44b2
ab12faf
5db44b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab12faf
 
 
5db44b2
 
ab12faf
5db44b2
 
 
ab12faf
5db44b2
ab12faf
5db44b2
 
 
 
 
 
 
 
 
ab12faf
 
 
5db44b2
 
ab12faf
5db44b2
 
 
ab12faf
5db44b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab12faf
 
 
 
 
 
 
 
 
5db44b2
 
 
 
 
ab12faf
 
 
 
 
 
 
5db44b2
ab12faf
 
 
 
 
 
 
5db44b2
ab12faf
 
 
 
 
 
 
 
5db44b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8">
  <meta name="description" content="LangGraph Agent Chat UI provides a React/Vite-based interface for interacting with LangGraph agents, supporting chat, tool rendering, and human-in-the-loop features.">
  <meta name="keywords" content="LangGraph, Agent Chat, React, Vite, Human-in-the-Loop">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title>LangGraph Agent Chat UI</title>

  <link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
  <link rel="stylesheet" href="./static/css/bulma.min.css">
  <link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
  <link rel="stylesheet" href="./static/css/bulma-slider.min.css">
  <link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
  <link rel="stylesheet" href="./static/css/index.css">
  <link rel="icon" href="./static/images/favicon.svg">

  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
  <script defer src="./static/js/fontawesome.all.min.js"></script>
  <script src="./static/js/bulma-carousel.min.js"></script>
  <script src="./static/js/bulma-slider.min.js"></script>
  <script src="./static/js/index.js"></script>
</head>
<body>

<section class="hero">
  <div class="hero-body">
    <div class="container is-max-desktop">
      <div class="columns is-centered">
        <div class="column has-text-centered">
          <h1 class="title is-1 publication-title">LangGraph Agent Chat UI</h1>
          <div class="is-size-5 publication-authors">
            <span class="author-block">A React/Vite Interface for LangGraph Agents</span>
          </div>
          <div class="column has-text-centered">
            <div class="publication-links">
              <span class="link-block">
                <a href="https://agentchat.vercel.app/" target="_blank" class="external-link button is-normal is-rounded is-dark">
                  <span class="icon"><i class="fas fa-globe"></i></span>
                  <span>Deployed Site</span>
                </a>
              </span>
              <span class="link-block">
                <a href="https://github.com/langchain-ai/agent-chat-ui" target="_blank" class="external-link button is-normal is-rounded is-dark">
                  <span class="icon"><i class="fab fa-github"></i></span>
                  <span>GitHub</span>
                </a>
              </span>
              <span class="link-block">
                <a href="https://python.langchain.com/docs/langgraph" target="_blank" class="external-link button is-normal is-rounded is-dark">
                  <span class="icon"><i class="fas fa-book"></i></span>
                  <span>LangGraph Docs</span>
                </a>
              </span>
            </div>
          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="hero teaser">
  <div class="container is-max-desktop">
    <div class="hero-body">
      <h2 class="subtitle has-text-centered">
        Your Gateway to Seamless Agent Interaction with <span class="dnerf">LangGraph</span>
      </h2>
    </div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <div class="columns is-centered has-text-centered">
      <div class="column is-four-fifths">
        <h2 class="title is-3">Overview</h2>
        <div class="content has-text-justified">
          <p>
            The <strong>Agent Chat UI</strong> is a React/Vite application that provides a clean, chat-based interface for interacting with your LangGraph agents. It’s designed to work seamlessly with LangGraph’s core features, including checkpoints, thread management, and human-in-the-loop capabilities.
          </p>
          <p>Here’s why it’s a valuable tool:</p>
          <ul>
            <li><strong>Easy Connection:</strong> Connect to local or deployed LangGraph agents with a simple URL and graph ID.</li>
            <li><strong>Intuitive Chat:</strong> Interact naturally with your agents in a familiar chat format.</li>
            <li><strong>Visualize Agent Actions:</strong> See tool calls and their results rendered directly in the UI.</li>
            <li><strong>Human-in-the-Loop Made Easy:</strong> Seamlessly integrate human input using LangGraph’s <code>interrupt</code> feature.</li>
            <li><strong>Explore Execution Paths:</strong> Travel through time, inspect checkpoints, and fork conversations.</li>
            <li><strong>Debug and Understand:</strong> Inspect the full state of your LangGraph thread at any point.</li>
          </ul>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3 has-text-centered">Get Started</h2>
    <div class="columns is-centered">
      <div class="column is-four-fifths">
        <div class="content">
          <h3 class="title is-4">1. Try the Deployed Version (No Setup Required!)</h3>
          <ul>
            <li><strong>Visit:</strong> <a href="https://agentchat.vercel.app/" target="_blank">agentchat.vercel.app</a></li>
            <li><strong>Connect:</strong> Enter your LangGraph deployment URL and graph ID (the <code>path</code> set with <code>langserve.add_routes</code>). For production, include your LangSmith API key.</li>
            <li><strong>Chat!</strong> Start interacting with your agent.</li>
          </ul>

          <h3 class="title is-4">2. Run Locally (Development & Customization)</h3>
          <p><strong>Option A: Clone the Repository</strong></p>
          <pre><code>git clone https://github.com/langchain-ai/agent-chat-ui.git
cd agent-chat-ui
pnpm install # Or npm install/yarn install
pnpm dev     # Or npm run dev/yarn dev</code></pre>

          <p><strong>Option B: Quickstart with <code>npx</code></strong></p>
          <pre><code>npx create-agent-chat-app
cd agent-chat-app
pnpm install # Or npm install/yarn install
pnpm dev     # Or npm run dev/yarn dev</code></pre>
          <p>Open your browser to <code>http://localhost:5173</code>.</p>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3 has-text-centered">Features</h2>
    <div class="columns is-centered">
      <div class="column is-four-fifths">
        <div class="content has-text-justified">
          <ul>
            <li><strong>Easy Connection:</strong> Connect to local or production LangGraph deployments with a URL and graph ID.</li>
            <li><strong>Chat Interface:</strong> Real-time messaging with automatic checkpoint persistence.</li>
            <li><strong>Tool Call Rendering:</strong> Visualize tool calls and results, compatible with LangGraph’s <a href="https://python.langchain.com/docs/guides/tools/custom_tools" target="_blank">tool calling</a>.</li>
            <li><strong>Human-in-the-Loop Support:</strong> Review, edit, and respond to interrupts using LangGraph’s <code>interrupt</code> function.</li>
            <li><strong>Thread History:</strong> Navigate past interactions with checkpointing.</li>
            <li><strong>Time Travel and Forking:</strong> Explore execution paths with LangGraph’s <a href="https://python.langchain.com/docs/modules/agents/concepts#checkpointing" target="_blank">checkpointing</a>.</li>
            <li><strong>State Inspection:</strong> Debug by examining the full LangGraph thread state.</li>
          </ul>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3 has-text-centered">LangGraph Setup Examples</h2>
    <div class="columns is-centered">
      <div class="column is-four-fifths">
        <div class="content">
          <h3 class="title is-4">Basic LangGraph Agent</h3>
          <pre><code class="language-python"># agent.py
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_agent_executor
from langserve import add_routes
from fastapi import FastAPI

prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful assistant"),
    MessagesPlaceholder(variable_name="messages"),
    MessagesPlaceholder(variable_name="agent_scratchpad"),
])
model = ChatOpenAI(temperature=0)
agent = {"messages": lambda x: x["messages"], "agent_scratchpad": lambda x: []} | prompt | model
app = create_agent_executor(agent, [])
fastapi_app = FastAPI(title="LangGraph Agent")
add_routes(fastapi_app, app, path="/chat")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(fastapi_app, host="localhost", port=2024)
</code></pre>
          <p>Run at <code>http://localhost:2024/chat</code> with graph ID <code>chat</code>.</p>

          <h3 class="title is-4">Human-in-the-Loop Example</h3>
          <pre><code class="language-python"># agent.py
from langgraph.prebuilt import create_agent_executor, interrupt
from langchain_core.tools import tool

@tool
def write_email(subject: str, body: str, to: str):
    return f"Draft email to {to} with subject {subject} sent."

tools = [write_email]
model = ChatOpenAI(model="gpt-4-turbo-preview").bind_tools(tools)

def handle_interrupt(state):
    messages = state["messages"]
    if isinstance(messages[-1].content, list):
        for msg in messages[-1].content:
            if isinstance(msg, ToolInvocation) and msg.name == "write_email":
                return interrupt(messages, {"type": "interrupt", "args": {"type": "response", "studio": msg.args}})
    return {"messages": messages}

agent = {"messages": lambda x: x["messages"], "agent_scratchpad": lambda x: []} | prompt | model | handle_interrupt
app = create_agent_executor(agent, tools)
fastapi_app = FastAPI(title="LangGraph Agent")
add_routes(fastapi_app, app, path="/email_agent")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(fastapi_app, host="localhost", port=2024)
</code></pre>
          <p>Run at <code>http://localhost:2024/email_agent</code> with graph ID <code>email_agent</code>.</p>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section" id="BibTeX">
  <div class="container is-max-desktop content">
    <h2 class="title">BibTeX</h2>
    <pre><code>@misc{langgraph2023agentchat,
  title = {LangGraph Agent Chat UI},
  author = {LangChain Team},
  year = {2023},
  url = {https://github.com/langchain-ai/agent-chat-ui}
}</code></pre>
  </div>
</section>

<footer class="footer">
  <div class="container">
    <div class="content has-text-centered">
      <a class="icon-link" href="https://github.com/langchain-ai/agent-chat-ui" target="_blank">
        <i class="fab fa-github"></i>
      </a>
    </div>
    <div class="columns is-centered">
      <div class="column is-8">
        <div class="content">
          <p>
            This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
          </p>
        </div>
      </div>
    </div>
  </div>
</footer>

</body>
</html>