Spaces:
Runtime error
Runtime error
File size: 12,573 Bytes
0c8d55e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
from typing import Any, Callable, Optional, List
import torch
from transformers import PreTrainedTokenizer
from torch.utils.data import Dataset
from tqdm import tqdm
import json
import os
from PIL import Image
from univa.utils.prompter import Prompter
import numpy as np
from einops import rearrange
import random
from univa.utils.constant import SPACIAL_TOKEN, GENERATE_TOKEN
class LlavaDataset(Dataset):
def __init__(
self,
dataset_type: str,
data_txt: str,
tokenizer: PreTrainedTokenizer,
prompter: Prompter,
image_processor: Callable,
processor: Callable = None,
min_pixels: int = 384*384,
max_pixels: int = 384*384,
image_token_length: int = 729,
only_generated_task: bool = False,
drop_prompt_rate: float = 0.2,
):
assert dataset_type == 'llava'
with open(data_txt, "r") as f:
self.datasets = [line.strip() for line in f.readlines()]
self.data = []
self._load_data()
self.tokenizer = tokenizer
self.prompter = prompter
self.image_token_length = image_token_length
self.image_token = SPACIAL_TOKEN[dataset_type]['image_token']
self.image_begin_token = SPACIAL_TOKEN[dataset_type]['image_begin_token']
self.image_end_token = SPACIAL_TOKEN[dataset_type]['image_end_token']
self.generated_image_token = GENERATE_TOKEN
self.image_processor = image_processor
self.only_generated_task = only_generated_task # For denoiser training
self.drop_prompt_rate = drop_prompt_rate
if self.drop_prompt_rate > 0:
assert self.only_generated_task, (
"Only generated task is supported when drop prompt rate is greater than 0"
)
# Add image token if not exists.
if self.image_token not in self.tokenizer.get_vocab():
self.tokenizer.add_special_tokens(
{"additional_special_tokens": [self.image_token]}
)
self.image_token_id = self.tokenizer.convert_tokens_to_ids(self.image_token)
self.image_begin_token_id = self.tokenizer.convert_tokens_to_ids(
self.image_begin_token
)
assert isinstance(self.image_begin_token_id, int), (
f"tokenizer miss image begin token `{self.image_begin_token}`"
)
self.image_end_token_id = self.tokenizer.convert_tokens_to_ids(
self.image_end_token
)
assert isinstance(self.image_end_token_id, int), (
f"tokenizer miss image end token `{self.image_end_token}`"
)
def _load_data(self):
for dataset in self.datasets:
image_root, json_file = dataset.split(",")
# Load json file
with open(json_file, "r") as f:
data = json.load(f)
dataset_data = []
for line in tqdm(data):
# Ensure `image` is a list
if isinstance(line["image"], str):
line["image"] = [line["image"]]
assert isinstance(line["image"], list), (
"`image` must be a str or a list."
)
# Convert image path to absolute path
line["image"] = [
os.path.join(image_root, image_path) for image_path in line["image"]
]
dataset_data.append(line)
print(f"Load {len(dataset_data)} data from {json_file}.")
self.data.extend(dataset_data)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
try:
data: Any = self.data[idx]
# Reformat the conversation to the format of prompter
conversations = []
prompt = ""
for item in data["conversations"]:
if item["from"] == "human":
role = self.prompter.user_role
elif item["from"] == "gpt":
role = self.prompter.assistant_role
else:
raise ValueError(f"Unknown role: {item['from']}")
conversations.append({"from": role, "value": item["value"]})
assert prompt != ""
# Make prompt
drop_condition = False
if self.only_generated_task:
if self.drop_prompt_rate < random.random(): # Randomly drop the prompt
prompt_list = self.prompter.get_train_prompt(conversations)
else:
drop_condition = True
# Drop the prompt
prompt_list = [
{
"from": self.prompter.system_role,
"value": "You are a helpful assistant.",
},
{
"from": self.prompter.user_role,
"value": "Generate an image.",
},
{
"from": self.prompter.assistant_role,
"value": self.generated_image_token,
},
]
prompt_list = self.prompter.get_train_prompt(prompt_list)
else:
prompt_list = self.prompter.get_train_prompt(conversations)
input_ids = []
labels = []
has_generated_image = False
for item in prompt_list:
item["prompt"] = item["prompt"].replace('<image>', self.image_token)
if self.generated_image_token in item["prompt"]: # Check if self.generated_image_token in prompt
assert item["from"] == self.prompter.assistant_role, (
"Generated image token must be in assistant role"
)
assert (
f"{self.generated_image_token}{self.prompter.eos_token}"
in item["prompt"]
), "Generated image token must in end of prompt"
# Replace the generated image token with image begin token and without eos token
item["prompt"] = item["prompt"].replace(
f"{self.generated_image_token}{self.prompter.eos_token}",
self.image_begin_token,
)
has_generated_image = True
tokenized_item = self.tokenizer(
item["prompt"],
return_tensors="pt",
truncation=False,
)
if item["is_labels"]: # If this prompt is labels
labels.append(tokenized_item.input_ids)
else:
labels.append(torch.full_like(tokenized_item.input_ids, -100))
input_ids.append(tokenized_item.input_ids)
if (
self.only_generated_task and not has_generated_image
): # For denoiser training
raise ValueError(
f"Only generated task is not supported. But this prompt not contains generated image token: {prompt_list[0]['prompt']}"
)
input_ids = torch.cat(input_ids, dim=1)
labels = torch.cat(labels, dim=1)
# Load images
if has_generated_image:
if not drop_condition:
image_slice = data["image"][:-1]
else:
image_slice = []
else:
image_slice = data["image"]
image_dict = self._load_image(image_slice, image_processor=self.image_processor, image_token_lengths=self.image_token_length)
image_token_lengths = image_dict['image_token_lengths']
pixel_values = image_dict['pixel_values']
image_grid_thw = image_dict['image_grid_thw']
# Repeat the image token to the length of image_token_length
# and record the position of image tokens.
input_ids, labels, image_position = self._process_image_token(
input_ids,
labels=labels,
image_token_id=self.image_token_id,
image_begin_token_id=self.image_begin_token_id,
image_end_token_id=self.image_end_token_id,
image_token_lengths=image_token_lengths,
)
return_data = {
"input_ids": input_ids,
"labels": labels,
"pixel_values": pixel_values,
"image_position": image_position,
"image_grid_thw": image_grid_thw,
"prompt": [prompt],
}
if has_generated_image: # If this item is a generation task
image = Image.open(data["image"][-1]).convert("RGB")
image_tensor = torch.tensor(np.array(image)) / 255.0 # scale to 0-1
image_tensor = rearrange(image_tensor, "h w c -> c h w")
return_data["generated_image"] = image_tensor
return return_data
except Exception as e:
print(f'Error with {e}')
return self.__getitem__(random.randint(0, self.__len__()-1))
@staticmethod
def _load_image(
image_slice: List[str],
max_pixels: int = 448*448,
min_pixels: int = 448*448,
processor: Callable = None,
image_processor: Callable = None,
image_token_lengths: int = 729,
image_token: str = '<image>',
):
# images tensor shape is (b, c, h, w)
images = []
# Ignore the last image (generated image)
for image_path in image_slice: # Ignore the last image (generated image)
image = Image.open(image_path).convert("RGB")
image = image_processor(
image, return_tensors="pt"
).pixel_values
images.append(image)
if len(images) > 0:
images = torch.cat(images)
image_token_lengths = len(images) * [image_token_lengths]
return {'pixel_values': images, 'image_grid_thw': [], 'image_token_lengths': image_token_lengths}
@staticmethod
def _process_image_token(
input_ids: torch.Tensor,
image_token_id: int,
image_begin_token_id: int,
image_end_token_id: int,
image_token_lengths: List[int],
labels: Optional[torch.Tensor] = None,
):
# Find the indices of the image token
image_token_indices = (input_ids == image_token_id).nonzero(as_tuple=True)
image_position = []
offset = 0
cur_i = 0
if isinstance(image_token_lengths, int):
image_token_lengths = [image_token_lengths] * len(image_token_indices[1])
for idx in image_token_indices[1]:
image_token_length = image_token_lengths[cur_i]
adjusted_idx = idx + offset
assert input_ids[0, adjusted_idx] == image_token_id
# Add image begin and end token
input_ids = torch.cat(
[
input_ids[:, :adjusted_idx],
input_ids.new_full(
(1, 1), image_begin_token_id
), # image begin token
input_ids.new_full(
(1, image_token_length), image_token_id
), # Repeat the image token to the length of image_token_length
input_ids.new_full((1, 1), image_end_token_id), # image end token
input_ids[:, adjusted_idx + 1 :],
],
dim=1,
)
if labels is not None:
labels = torch.cat(
[
labels[:, :adjusted_idx],
labels.new_full(
(1, 1), image_begin_token_id
), # Make begin token as label
labels.new_full((1, image_token_length), -100),
labels.new_full((1, 1), -100),
labels[:, adjusted_idx + 1 :],
],
dim=1,
)
adjusted_idx += 1 # skip the image begin token
image_position.append(adjusted_idx.item())
offset += image_token_length - 1
offset += 2 # begin and end token
return input_ids, labels, image_position
|