File size: 27,284 Bytes
0c8d55e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
from typing import Any, Callable, Optional, List

import torch
from transformers import PreTrainedTokenizer
from torch.utils.data import Dataset
from tqdm import tqdm
import json
import os
from PIL import Image
from univa.utils.prompter import Prompter
import numpy as np
from einops import rearrange
import random
# from qwen_vl_utils.vision_process import fetch_image, fetch_video
from qwen_vl_utils.vision_process import to_rgb, smart_resize, fetch_video
from univa.utils.constant import SPACIAL_TOKEN, GENERATE_TOKEN
from univa.utils.get_mask import get_weight_mask
from univa.utils.get_ocr import get_ocr_result
from fractions import Fraction
from torchvision.transforms import functional
from torchvision import transforms
from io import BytesIO
import base64
import requests
import torch
from PIL import Image
from torchvision import io, transforms
from typing import Optional


def get_aspect_ratio(img):
    width, height = img.size
    return Fraction(width, height).limit_denominator()

def has_same_aspect_ratio(img1, img2):
    if not isinstance(img1, Image.Image):
        img1 = Image.open(img1).convert('RGB')
    if not isinstance(img2, Image.Image):
        img2 = Image.open(img2).convert('RGB')
    ratio1 = get_aspect_ratio(img1)
    ratio2 = get_aspect_ratio(img2)
    return ratio1 == ratio2

def has_same_resolution(img1, img2):
    if not isinstance(img1, Image.Image):
        img1 = Image.open(img1).convert('RGB')
    if not isinstance(img2, Image.Image):
        img2 = Image.open(img2).convert('RGB')
    return img1.size == img2.size

class Qwen2VLDataset(Dataset):
    def __init__(
        self,
        dataset_type: str,
        data_txt: str,
        transform: Callable, 
        tokenizer: PreTrainedTokenizer,
        prompter: Prompter,
        image_processor: Callable,
        processor: Callable = None,
        min_pixels: int = 384*384, 
        max_pixels: int = 384*384, 
        image_token_length: int = 729,
        only_generated_task: bool = False,
        drop_prompt_rate: float = 0.0,
        joint_ref_feature: bool = False,
        anyres: bool = False, 
        mask_weight_type: str = 'log', 
        siglip_processor: Callable = None,
        ocr_enhancer: bool = False, 
        random_data: bool = False, 
        maxnum_per_data: int = -1, 
        notry: bool = False, 
    ):
        assert dataset_type == 'qwen2vl' or dataset_type == 'qwen2p5vl', "dataset_type == 'qwen2vl' or dataset_type == 'qwen2p5vl'"
        with open(data_txt, "r") as f:
            self.datasets = [line.strip() for line in f.readlines()]

        self.data = []
        self._load_data(maxnum_per_data)
        
        self.transform = transform
        self.processor = processor
        self.tokenizer = processor.tokenizer
        self.prompter = prompter
        self.min_pixels = min_pixels
        self.max_pixels = max_pixels
        self.image_token = SPACIAL_TOKEN[dataset_type]['image_token']
        self.image_begin_token = SPACIAL_TOKEN[dataset_type]['image_begin_token']
        self.image_end_token = SPACIAL_TOKEN[dataset_type]['image_end_token']
        self.generated_image_token = GENERATE_TOKEN
        self.image_processor = processor.image_processor
        # self.factor = 4 if joint_ref_feature else 1
        self.factor = 2

        self.only_generated_task = only_generated_task  # For denoiser training
        self.drop_prompt_rate = drop_prompt_rate
        if self.drop_prompt_rate > 0:
            assert self.only_generated_task, (
                "Only generated task is supported when drop_prompt_rate > 0"
            )
        self.mask_weight_type = mask_weight_type
        self.siglip_processor = siglip_processor
        self.ocr_enhancer = ocr_enhancer
        self.random_data = random_data
        self.notry = notry

        # Add image token if not exists.
        assert self.image_token in self.tokenizer.get_vocab()
        self.image_token_id = self.tokenizer.convert_tokens_to_ids(self.image_token)

        self.image_begin_token_id = self.tokenizer.convert_tokens_to_ids(
            self.image_begin_token
        )
        assert isinstance(self.image_begin_token_id, int), (
            f"tokenizer miss image begin token `{self.image_begin_token}`"
        )
        self.image_end_token_id = self.tokenizer.convert_tokens_to_ids(
            self.image_end_token
        )
        assert isinstance(self.image_end_token_id, int), (
            f"tokenizer miss image end token `{self.image_end_token}`"
        )

    def _load_data(self, maxnum_per_data=-1):
        for dataset in self.datasets:
            image_root, json_file, need_weight = dataset.split(",")

            # Load json file
            with open(json_file, "r") as f:
                data = json.load(f)
            if maxnum_per_data > 0 and maxnum_per_data < len(data):
                print(f'original data: {len(data)}, sample: {maxnum_per_data}')
                data = random.sample(data, maxnum_per_data)
            dataset_data = []
            for line in tqdm(data):
                if "image" not in line:
                    line["image"] = []
                # Ensure `image` is a list
                if isinstance(line["image"], str):
                    line["image"] = [line["image"]]
                assert isinstance(line["image"], list), (
                    "`image` must be a str or a list."
                )

                # Convert image path to absolute path
                line["need_weight"] = need_weight
                line["image"] = [
                    os.path.join(image_root, image_path) for image_path in line["image"]
                ]
                dataset_data.append(line)

            print(f"Load {len(dataset_data)} data from {json_file}.")
            self.data.extend(dataset_data)

    def __len__(self):
        return len(self.data)

    def _get_random_data(self, ):
        
        prompt = self.prompter(
            [
                {"from": "system", "value": "You are a helpful assistant."},
                {
                    "from": "user",
                    "value": f"test an image {self.image_token}",
                },
            ]
        )
        input_ids = self.tokenizer.batch_encode_plus(
            [prompt], return_tensors="pt", truncation=False,
        ).input_ids
        labels = input_ids

        width, height = 448, 448
        random_data = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
        image = Image.fromarray(random_data, 'RGB')

        image_slice = [image]
        image_dict = self._load_image(
            image_slice, self.max_pixels, self.min_pixels, 
            processor=self.processor, image_token=self.image_token, 
            factor=self.factor, 
            last_image=image,
            vae_image_transform=self.transform, 
            drop_prompt=False, 
            prompt=prompt, 
            mask_weight_type=self.mask_weight_type, 
            siglip_processor=self.siglip_processor, 
            )
        
        image_token_lengths = image_dict['image_token_lengths']
        pixel_values = image_dict['pixel_values']
        image_grid_thw = image_dict['image_grid_thw']
        ref_pixel_values = image_dict['ref_pixel_values']
        pil_pixel_values = image_dict['pil_pixel_values']
        siglip_pixel_values = image_dict['siglip_pixel_values']
        weights = image_dict['weights']

        input_ids, labels, image_position = self._process_image_token(
                input_ids,
                labels=labels,
                image_token_id=self.image_token_id,
                image_begin_token_id=self.image_begin_token_id,
                image_end_token_id=self.image_end_token_id,
                image_token_lengths=image_token_lengths, 
            )
        
        generated_image = torch.randn(3, 512, 512)
        
        return_data = {
            "input_ids": input_ids,
            "labels": labels,
            "pixel_values": pixel_values,
            "image_position": image_position,
            "image_grid_thw": image_grid_thw, 
            "prompt": prompt,
            "ref_pixel_values": ref_pixel_values, 
            "pil_pixel_values": pil_pixel_values, 
            "siglip_pixel_values": siglip_pixel_values, 
            "weights": weights, 
            "generated_image": generated_image, 
        }
        return return_data

    def getitem(self, data):
        # Reformat the conversation to the format of prompter
        conversations = []
        prompt = ""
        for item in data["conversations"]:
            if item["from"] == "human":
                role = self.prompter.user_role
                prompt = item["value"]
            elif item["from"] == "gpt":
                role = self.prompter.assistant_role
            else:
                raise ValueError(f"Unknown role: {item['from']}")
            conversations.append({"from": role, "value": item["value"]})
        assert prompt != "", "prompt != ''"
        # The last turn instruction will be used for t5_embed
        prompt = prompt.replace('<image>', '').replace('\n', '')

        # Make prompt
        drop_prompt = False
        if self.only_generated_task:
            if self.drop_prompt_rate < random.random():  # Randomly drop the prompt
                prompt_list = self.prompter.get_train_prompt(conversations)
            else:
                drop_prompt = True
                num_images = (''.join([i['value'] for i in conversations])).count('<image>')
                # Drop the prompt
                prompt_list = [
                    {
                        "from": self.prompter.system_role,
                        "value": "You are a helpful assistant.",
                    },
                    {
                        "from": self.prompter.user_role,
                        # "value": f"{num_images * '<image>'} Generate an image.",
                        "value": "Generate an image.",
                    },
                    {
                        "from": self.prompter.assistant_role,
                        "value": self.generated_image_token,
                    },
                ]
                prompt_list = self.prompter.get_train_prompt(prompt_list)
        else:
            prompt_list = self.prompter.get_train_prompt(conversations)
            
        input_ids = []
        labels = []
        has_generated_image = False
        cur_i = 0
        for item in prompt_list:
            item["prompt"] = item["prompt"].replace('<image>', self.image_token)
            
            if self.generated_image_token in item["prompt"]:  # Check if self.generated_image_token in prompt
                assert item["from"] == self.prompter.assistant_role, (
                    "Generated image token must be in assistant role"
                )
                assert (
                    f"{self.generated_image_token}{self.prompter.eos_token}"
                    in item["prompt"]
                ), "Generated image token must in end of prompt"

                # Replace the generated image token with image begin token and without eos token
                item["prompt"] = item["prompt"].replace(
                    f"{self.generated_image_token}{self.prompter.eos_token}",
                    self.image_begin_token,
                )
                has_generated_image = True

            if self.ocr_enhancer and (self.image_token in item["prompt"]):
                # print('item["prompt"]', item["prompt"])
                if not has_generated_image:
                    num_img = item["prompt"].count(self.image_token)
                    ocr_sentences = []
                    for i in range(num_img):
                        ocr_sentences.append(get_ocr_result(data["image"][cur_i], cur_i))
                        cur_i += 1
                    ocr_sentences = '\n'.join(ocr_sentences)
                    if len(ocr_sentences.split()) > 256:
                        print(f'ocr_sentences too long, total len {len(ocr_sentences.split())} trunk first 256')
                        ocr_sentences = ' '.join(ocr_sentences.split()[:256])
                    # ocr_sentences = ''
                    assert item['prompt'][-len(self.prompter.eos_token):] == self.prompter.eos_token, \
                        "item['prompt'][-len(self.prompter.eos_token):] == self.prompter.eos_token"
                    assert item['prompt'].count(self.prompter.eos_token) == 1, \
                        "item['prompt'].count(self.prompter.eos_token) == 1"
                    item["prompt"] = item["prompt"].replace(self.prompter.eos_token, f'{ocr_sentences} {self.prompter.eos_token}')

            tokenized_item = self.tokenizer(
                item["prompt"],
                return_tensors="pt",
                truncation=True,
                max_length=1024, 
            )
            if item["is_labels"]:  # If this prompt is labels
                labels.append(tokenized_item.input_ids)
            else:
                labels.append(torch.full_like(tokenized_item.input_ids, -100))
            input_ids.append(tokenized_item.input_ids)

        if (
            self.only_generated_task and not has_generated_image
        ):  # For denoiser training
            raise ValueError(
                f"Only generated task is not supported. But this prompt not contains generated image token: {prompt_list[0]['prompt']}"
            )

        input_ids = torch.cat(input_ids, dim=1)
        labels = torch.cat(labels, dim=1)

        # Load images
        if has_generated_image:
            # generate task
            # process images but exclude the last image, which need to generate
            image_slice = data["image"][:-1]
        else:
            # understanding task
            image_slice = data["image"]


        image_dict = self._load_image(
            image_slice, self.max_pixels, self.min_pixels, 
            processor=self.processor, image_token=self.image_token, 
            factor=self.factor, 
            last_image=data["image"][-1] if has_generated_image else None,
            vae_image_transform=self.transform, 
            drop_prompt=drop_prompt, 
            prompt=prompt, 
            mask_weight_type=self.mask_weight_type, 
            siglip_processor=self.siglip_processor, 
            need_weight=data['need_weight'], 
            )
        
        image_token_lengths = image_dict['image_token_lengths']
        pixel_values = image_dict['pixel_values']
        image_grid_thw = image_dict['image_grid_thw']
        ref_pixel_values = image_dict['ref_pixel_values']
        pil_pixel_values = image_dict['pil_pixel_values']
        siglip_pixel_values = image_dict['siglip_pixel_values']
        weights = image_dict['weights']

        input_ids, labels, image_position = self._process_image_token(
            input_ids,
            labels=labels,
            image_token_id=self.image_token_id,
            image_begin_token_id=self.image_begin_token_id,
            image_end_token_id=self.image_end_token_id,
            image_token_lengths=image_token_lengths, 
        )


        return_data = {
            "input_ids": input_ids,
            "labels": labels,
            "pixel_values": pixel_values,
            "image_position": image_position,
            "image_grid_thw": image_grid_thw, 
            "prompt": prompt,
            "ref_pixel_values": ref_pixel_values, 
            "pil_pixel_values": pil_pixel_values, 
            "siglip_pixel_values": siglip_pixel_values, 
            "weights": weights, 
        }

        if has_generated_image: # If this item is a generation task
            image = Image.open(data["image"][-1]).convert("RGB")
            # if self.anyres:
            #     image = image.resize(pil_pixel_values[-1].size)
            image_tensor = torch.tensor(np.array(image)) / 255.0  # scale to 0-1
            image_tensor = rearrange(image_tensor, "h w c -> c h w")
            return_data["generated_image"] = self.transform(image_tensor)
        else:
            return_data["generated_image"] = []
        return return_data
    
    def __getitem__(self, idx):
        if self.random_data:
            return self._get_random_data()
        
        data: Any = self.data[idx]
        if self.notry:
            return self.getitem(data)
        try:
            return self.getitem(data)
        except Exception as e:
            print(f'Error with {e}')
            return self.__getitem__(random.randint(0, self.__len__()-1))

    @staticmethod
    def _load_image(
        image_slice: List[str],
        max_pixels: int = 448*448,  
        min_pixels: int = 448*448, 
        processor: Callable = None, 
        image_processor: Callable = None, 
        image_token_lengths: int = 729, 
        image_token: str = '<|image_pad|>', 
        factor: int = 1, 
        last_image: Optional[str] = None, 
        vae_image_transform: Callable = None,
        drop_prompt: bool = False, 
        prompt: str = '', 
        mask_weight_type: str = None, 
        siglip_processor: Callable = None, 
        need_weight: str = 'true', 
    ):
        resize_ref_image = False
        pil_pixel_values_last = []
        if last_image is not None:
            last_vision_infos = dict(
                image=last_image, min_pixels=min_pixels, max_pixels=max_pixels
                )
            # last_image will be resize by qwenvl-processor automatically
            # generated variable resolution
            last_image_inputs, last_video_inputs = process_vision_info([last_vision_infos], factor=factor)

            # logging what size will be process when use qwenvl-processor
            pil_pixel_values_last.append(last_image_inputs[0])
            
            # not all reference images are same resolution
            # if multiple reference images and they have different resolution, resize it depend on last_image (generated_image)
            if not all([has_same_resolution(image_path, last_image) for image_path in image_slice]):
                resize_ref_image = True
                resize_w, resize_h = last_image_inputs[0].size

        image_token_lengths = []
        pixel_values = []
        image_grid_thw = []
        ref_pixel_values = []
        pil_pixel_values = []
        siglip_pixel_values = []
        # Ignore the last image (generated image)
        for image_path in image_slice: 
            vision_infos = dict(image=image_path, min_pixels=min_pixels, max_pixels=max_pixels)
            
            # if multiple reference images and they have different aspect ratio, resize it depend on generated_image (last_image)
            if resize_ref_image:
                vision_infos.update(
                    dict(resized_height=resize_h, resized_width=resize_w)
                    )
            image_inputs, video_inputs = process_vision_info([vision_infos], factor=factor)
            inputs = processor(text=[f'dummy {image_token}'], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
            
            if not drop_prompt:
                pixel_values.append(inputs.pixel_values)  # inputs.pixel_values shape is (token, dim)
                image_grid_thw.append(inputs.image_grid_thw)  # image_grid_thw List[int, int, int]
                image_token_length = (inputs.input_ids[0] == processor.tokenizer.convert_tokens_to_ids(image_token)).sum()
                image_token_lengths.append(image_token_length)

            image_tensor = torch.tensor(np.array(image_inputs[0])) / 255.0  # scale to 0-1
            image_tensor = rearrange(image_tensor, "h w c -> 1 c h w")
            if vae_image_transform is not None:
                # image_tensor has been resized by qwenvl-processor
                image_tensor = (image_tensor - 0.5) / 0.5  # shift [0, 1] to [-1, 1]
            pil_pixel_values.append(image_inputs[0])

            if siglip_processor is not None:
                siglip_pixel_value = siglip_processor.preprocess(
                            images=Image.open(image_path).convert('RGB') if isinstance(image_path, str) else image_path, 
                            do_resize=True, return_tensors="pt", do_convert_rgb=True
                        ).pixel_values  # 1 c h w
                if drop_prompt:
                    siglip_pixel_values.append(torch.zeros_like(siglip_pixel_value))
                else:
                    siglip_pixel_values.append(siglip_pixel_value)
            # use zero_image as uncondition reference image
            if drop_prompt:
                ref_pixel_values.append(torch.zeros_like(image_tensor))
            else:
                ref_pixel_values.append(image_tensor)
            

            
        # if multi-image in a sample, concat them
        # assume pixel_values[0] (n1, 1176), pixel_values[1] (n2, 1176), pixel_values will be (n1+n2, 1176)
        if len(pixel_values) > 0:
            pixel_values = torch.concat(pixel_values)
            image_grid_thw = torch.concat(image_grid_thw)  # (b, 3), 3 mean the grid of t, h, w
        # if len(ref_pixel_values) > 0: 
        #     ref_pixel_values = torch.concat(ref_pixel_values)  # b c h w
        ref_pixel_values = []
        if len(siglip_pixel_values) > 0: 
            siglip_pixel_values = torch.concat(siglip_pixel_values)  # b c h w

        pil_pixel_values = pil_pixel_values + pil_pixel_values_last
        
        if mask_weight_type is not None:
            _, weights = get_weight_mask(pil_pixel_values, prompt, mask_weight_type, need_weight)
            if need_weight.lower() == 'false':
                assert torch.all(weights == 1)
        else:
            weights = []
        return {
            'pixel_values': pixel_values, 
            'image_grid_thw': image_grid_thw, 
            'image_token_lengths': image_token_lengths, 
            'ref_pixel_values': ref_pixel_values, 
            'pil_pixel_values': pil_pixel_values, 
            'siglip_pixel_values': siglip_pixel_values, 
            'weights': weights, 
            }

    @staticmethod
    def _process_image_token(
        input_ids: torch.Tensor,
        image_token_id: int,
        image_begin_token_id: int,
        image_end_token_id: int,
        image_token_lengths: List[int],
        labels: Optional[torch.Tensor] = None,
    ):
        # Find the indices of the image token
        image_token_indices = (input_ids == image_token_id).nonzero(as_tuple=True)
        # assert len(image_token_lengths) == image_token_indices[1].numel()
        image_position = []
        offset = 0
        cur_i = 0
        if isinstance(image_token_lengths, int):
            image_token_lengths = [image_token_lengths] * len(image_token_indices[1])
        for idx in image_token_indices[1]:
            image_token_length = image_token_lengths[cur_i]
            adjusted_idx = idx + offset
            assert input_ids[0, adjusted_idx] == image_token_id, "assert input_ids[0, adjusted_idx] == image_token_id"

            # Add image begin and end token
            input_ids = torch.cat(
                [
                    input_ids[:, :adjusted_idx],
                    input_ids.new_full(
                        (1, 1), image_begin_token_id
                    ),  # image begin token
                    input_ids.new_full(
                        (1, image_token_length), image_token_id
                    ),  # Repeat the image token to the length of image_token_length
                    input_ids.new_full((1, 1), image_end_token_id),  # image end token
                    input_ids[:, adjusted_idx + 1 :],
                ],
                dim=1,
            )
            if labels is not None:
                labels = torch.cat(
                    [
                        labels[:, :adjusted_idx],
                        labels.new_full(
                            (1, 1), image_begin_token_id
                        ),  # Make begin token as label
                        labels.new_full((1, image_token_length), -100),
                        labels.new_full((1, 1), -100),
                        labels[:, adjusted_idx + 1 :],
                    ],
                    dim=1,
                )

            adjusted_idx += 1  # skip the image begin token
            image_position.append(adjusted_idx.item())
            offset += image_token_length - 1
            offset += 2  # begin and end token

            cur_i += 1

        return input_ids, labels, image_position
    

def fetch_image(ele: dict[str, str | Image.Image], size_factor: int = 28) -> Image.Image:
    if "image" in ele:
        image = ele["image"]
    else:
        image = ele["image_url"]
    image_obj = None
    if isinstance(image, Image.Image):
        image_obj = image
    elif image.startswith("http://") or image.startswith("https://"):
        response = requests.get(image, stream=True)
        image_obj = Image.open(BytesIO(response.content))
    elif image.startswith("file://"):
        image_obj = Image.open(image[7:])
    elif image.startswith("data:image"):
        if "base64," in image:
            _, base64_data = image.split("base64,", 1)
            data = base64.b64decode(base64_data)
            image_obj = Image.open(BytesIO(data))
    else:
        image_obj = Image.open(image)
    if image_obj is None:
        raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
    image = to_rgb(image_obj)
    ## resize
    if "resized_height" in ele and "resized_width" in ele:
        resized_height, resized_width = smart_resize(
            ele["resized_height"],
            ele["resized_width"],
            factor=size_factor,
        )
    else:
        width, height = image.size
        min_pixels = ele.get("min_pixels")
        max_pixels = ele.get("max_pixels")
        resized_height, resized_width = smart_resize(
            height,
            width,
            factor=size_factor,
            min_pixels=min_pixels,
            max_pixels=max_pixels,
        )
    image = image.resize((resized_width, resized_height), resample=Image.Resampling.BICUBIC)

    return image

def process_vision_info(
    vision_infos: list,
    return_video_kwargs: bool = False,
    factor: int = 1, 
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] | None, Optional[dict]]:

    ## Read images or videos
    image_inputs = []
    video_inputs = []
    video_sample_fps_list = []
    for vision_info in vision_infos:
        if "image" in vision_info or "image_url" in vision_info:
            image_inputs.append(fetch_image(vision_info, size_factor=28*factor))
        elif "video" in vision_info:
            video_input, video_sample_fps = fetch_video(vision_info, return_video_sample_fps=True)
            video_sample_fps_list.append(video_sample_fps)
            video_inputs.append(video_input)
        else:
            raise ValueError("image, image_url or video should in content.")
    if len(image_inputs) == 0:
        image_inputs = None
    if len(video_inputs) == 0:
        video_inputs = None
    if return_video_kwargs:
        return image_inputs, video_inputs, {'fps': video_sample_fps_list}
    return image_inputs, video_inputs