Spaces:
Runtime error
Runtime error
File size: 8,877 Bytes
0c8d55e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import sys
import os
root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
sys.path.append(root)
import json
import torch
import random
import subprocess
import numpy as np
import torch.distributed as dist
import pandas as pd
import argparse
import torch
import os
from PIL import Image
from tqdm import tqdm
import torch.distributed as dist
from qwen_vl_utils import process_vision_info
from torchvision import transforms
from transformers import AutoProcessor
from transformers import SiglipImageProcessor, SiglipVisionModel
from univa.utils.flux_pipeline import FluxPipeline
from univa.eval.configuration_eval import EvalConfig
from univa.utils.get_ocr import get_ocr_result
from univa.utils.denoiser_prompt_embedding_flux import encode_prompt
from univa.models.qwen2p5vl.modeling_univa_qwen2p5vl import UnivaQwen2p5VLForConditionalGeneration
from univa.utils.anyres_util import dynamic_resize
# adapted from https://github.com/huggingface/accelerate/blob/main/src/accelerate/utils/random.py#L31
def set_seed(seed, rank, device_specific=True):
if device_specific:
seed += rank
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def initialize_models(args, device):
# Load main model and task head
model = UnivaQwen2p5VLForConditionalGeneration.from_pretrained(
args.pretrained_lvlm_name_or_path,
torch_dtype=torch.bfloat16
).to(device)
processor = AutoProcessor.from_pretrained(
args.pretrained_lvlm_name_or_path,
min_pixels=args.min_pixels,
max_pixels=args.max_pixels,
)
# Load FLUX pipeline
pipe = FluxPipeline.from_pretrained(
args.pretrained_denoiser_name_or_path,
transformer=model.denoise_tower.denoiser,
torch_dtype=torch.bfloat16,
).to(device)
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
siglip_processor = SiglipImageProcessor.from_pretrained(args.pretrained_siglip_name_or_path)
siglip_model = SiglipVisionModel.from_pretrained(
args.pretrained_siglip_name_or_path,
torch_dtype=torch.bfloat16,
).to(device)
return {
'model': model,
'processor': processor,
'pipe': pipe,
'tokenizers': tokenizers,
'text_encoders': text_encoders,
'device': device,
'siglip_model': siglip_model,
'siglip_processor': siglip_processor,
}
def init_gpu_env(args):
local_rank = int(os.getenv('RANK', 0))
world_size = int(os.getenv('WORLD_SIZE', 1))
args.local_rank = local_rank
args.world_size = world_size
torch.cuda.set_device(local_rank)
dist.init_process_group(
backend='nccl', init_method='env://',
world_size=world_size, rank=local_rank
)
return args
def update_size(i1, i2, anyres='any_11ratio', anchor_pixels=1024*1024):
shapes = []
for p in (i1, i2):
if p:
im = Image.open(p)
w, h = im.size
shapes.append((w, h))
if not shapes:
return int(anchor_pixels**0.5), int(anchor_pixels**0.5)
if len(shapes) == 1:
w, h = shapes[0]
else:
w = sum(s[0] for s in shapes) / len(shapes)
h = sum(s[1] for s in shapes) / len(shapes)
new_h, new_w = dynamic_resize(int(h), int(w), anyres, anchor_pixels=anchor_pixels)
return new_h, new_w
def run_model_and_return_samples(args, state, text, image1=None, image2=None):
# Build content
convo = []
image_paths = []
content = []
if text:
ocr_text = ''
if args.ocr_enhancer and content:
ocr_texts = []
for img in (image1, image2):
if img:
ocr_texts.append(get_ocr_result(img, cur_ocr_i))
cur_ocr_i += 1
ocr_text = '\n'.join(ocr_texts)
content.append({'type':'text','text': text + ocr_text})
for img in (image1, image2):
if img:
content.append({'type':'image','image':img,'min_pixels':args.min_pixels,'max_pixels':args.max_pixels})
image_paths.append(img)
convo.append({'role':'user','content':content})
new_h, new_w = update_size(image1, image2, 'any_11ratio', anchor_pixels=args.height * args.width)
# Prepare inputs
chat_text = state['processor'].apply_chat_template(
convo,
tokenize=False,
add_generation_prompt=True
)
chat_text = '<|im_end|>\n'.join(chat_text.split('<|im_end|>\n')[1:])
image_inputs, video_inputs = process_vision_info(convo)
inputs = state['processor'](
text=[chat_text], images=image_inputs, videos=video_inputs,
padding=True, return_tensors='pt'
).to(state['device'])
# Generate
# image generation pipeline
siglip_hs = None
if state['siglip_processor'] and image_paths:
vals = [state['siglip_processor'].preprocess(
images=Image.open(p).convert('RGB'), do_resize=True,
return_tensors='pt', do_convert_rgb=True
).pixel_values.to(state['device'])
for p in image_paths]
siglip_hs = state['siglip_model'](torch.concat(vals)).last_hidden_state
with torch.no_grad():
lvlm = state['model'](
inputs.input_ids, pixel_values=getattr(inputs,'pixel_values',None),
attention_mask=inputs.attention_mask,
image_grid_thw=getattr(inputs,'image_grid_thw',None),
siglip_hidden_states=siglip_hs,
output_type='denoise_embeds'
)
prm_embeds, pooled = encode_prompt(
state['text_encoders'], state['tokenizers'],
text if args.joint_with_t5 else '', 256, state['device'], 1
)
if args.only_use_t5:
emb = prm_embeds
else:
emb = torch.concat([lvlm, prm_embeds], dim=1) if args.joint_with_t5 else lvlm
with torch.no_grad():
img = state['pipe'](
prompt_embeds=emb,
pooled_prompt_embeds=pooled,
# height=args.height,
# width=args.width,
height=new_h,
width=new_w,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
num_images_per_prompt=args.num_images_per_prompt,
).images
return img
def main(args):
args = init_gpu_env(args)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
set_seed(args.seed, rank=args.local_rank, device_specific=True)
device = torch.cuda.current_device()
state = initialize_models(args, device)
# Create the output directory if it doesn't exist
os.makedirs(args.output_dir, exist_ok=True)
# Load the evaluation prompts
with open(args.gedit_prompt_path, "r") as f:
data = json.load(f)
inference_list = []
for key, value in tqdm(data.items()):
outpath = args.output_dir
os.makedirs(outpath, exist_ok=True)
prompt = value["prompt"]
image_path = value['id']
inference_list.append([prompt, outpath, key, image_path])
inference_list = inference_list[args.local_rank::args.world_size]
for prompt, output_path, key, image_path in tqdm(inference_list):
output_path = os.path.join(output_path, image_path)
real_image_path = os.path.join(args.imgedit_image_dir, image_path)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
if os.path.exists(output_path):
continue
image = run_model_and_return_samples(args, state, prompt, image1=real_image_path, image2=None)
image = image[0]
image = image.resize((args.resized_width, args.resized_height))
image.save(
output_path
)
if __name__ == "__main__":
import argparse
from omegaconf import OmegaConf
parser = argparse.ArgumentParser()
parser.add_argument("config", type=str)
parser.add_argument("--pretrained_lvlm_name_or_path", type=str, default=None, required=False)
parser.add_argument("--output_dir", type=str, default=None, required=False)
args = parser.parse_args()
config = OmegaConf.load(args.config)
schema = OmegaConf.structured(EvalConfig)
conf = OmegaConf.merge(schema, config)
if args.pretrained_lvlm_name_or_path is not None:
assert args.output_dir is not None
conf.pretrained_lvlm_name_or_path = args.pretrained_lvlm_name_or_path
conf.output_dir = args.output_dir
main(conf) |